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ABSTRACT 

In order to increase robustness, reliability, and mission success rate, autonomous 

vehicles must detect debilitating system control faults. Prior model-based observer 

design for 21UUV was analyzed using actual vehicle sensor data. It was shown, based 

on experimental response, that residual generation during maneuvering was too excessive 

to detect manually implemented faults. Optimization of vehicle hydrodynamic 

coefficients in the model significantly decreased maneuvering residuals, but did not allow 

for adequate fault detection. Kaiman filtering techniques were used to improve residual 

reduction during maneuvering and increase residual generation during fault conditions. 

Optimization of the Kaiman filter's system noise matrix, measurement noise matrix, and 

input gain scalar multiplier produced fault resolution which allowed for accurate 

detection of faults of relatively minor magnitude within minimal time constraints. 
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I. INTRODUCTION 

A.       GENERAL BACKGROUND AND LITERATURE 

When a potentially dangerous or extreme mission arises where the use of human 

resources presents the element of excessive risk, the utilization of automated systems to 

satisfactorily complete the mission becomes very desirable, if not mandatory, to alleviate 

possible human harm. In a scenario that calls for the use of Autonomous Underwater 

Vehicles (AUV's), such as minefield mapping, it is imperative that the on-scene 

commander has the utmost confidence in the reliability of the operational assets that are 

assigned under his/her control to execute the assigned mission. As with all autonomous 

systems or machines tasked with carrying out complex mission assignments in extreme 

environments, AUV's may experience unforeseen problems that might threaten the 

mission reliability and completeness of operational goals. Thus, it is imperative to 

maximize the possibility of mission completeness by utilizing AUV control systems that 

are capable of detecting a variety of failures within their subsystems and autonomously 

correcting for such failures. 

The ability for an AUV to compensate for its own failures may arise from the use 

of fault detectors combined with a Fuzzy Logic Inference System. This system would 

analyze the detected fault and decide whether the fault's impact may be lessened by the 

compensation from other on-board means, or whether the fault is severe enough to 

essentially transfer decision making to higher levels of authority, i.e. the on-scene 

commander. Prior to the execution of any fault compensating actions, it is necessary that 

the actual fault be detectable through all system and measurement noise processed by the 



control systems. The ability to accurately detect the fault is paramount to the ability of 

the AUV to adequately compensate for the failure and subsequently, to increase the 

likelihood of mission completion. 

The technological achievements in the design, modeling, and production of 

AUV's have been outstanding over recent years. There has been an abundance of current 

advances in technology and research that has led the way for the accomplishment of this 

work in the area of fault detection. Although much progress has occurred, it is still 

necessary to improve upon the precision of underwater navigation, the development of 

more sensitive sensors, the capability and dependability of underwater communications, 

and the reliability of long-term mission completion. Due to the need for more work to be 

completed in the field of AUV technology, there is a large range of work currently on- 

going. Some of the more recent works in AUV technology are described here to give an 

example of the intense interest and importance of advancing AUV capabilities. 

It has been shown that accurate underwater navigation within operational limits is 

possible. Healey and Lienard (1993) proved that for the combined speed, steering, and 

diving response of a slow moving AUV, multivariable sliding mode autopilots, based on 

feedback and the assumption of decoupled modeling was very satisfactory. Healey 

(1994) has achieved further developments in hover control behavior using the ST 1000 

and ST725 high frequency sonars to provide data about the environment. Marco and 

Healey (1996) demonstrated a method to navigate an AUV in a local area using an 

acoustic sensor for position information derived from feature detection. Marco (1996) 

produced a work which described the advantages of AUV's over ROV's or manned 

submarines, in which he designed and verified a working hybrid control system 



combining mission management with robust motion controllers. And finally, Bellingham 

(1997), Smith (1995), and An (1998) have described the uses of an AUV for 

oceanographic survey and have given results on positioning accuracy for survey 

missions. 

In the field of fault detection and resolution algorithms, the works sited here are 

recent studies into different fault detect methods and techniques. A good summary of 

some basic fault detection methods with some examples of detecting faults in an 

electrically driven centrifugal pump and detecting leaks for pipelines was done by 

Isermann (1984). Healey (1992) proposed the use of Extended Kaiman Filters and 

Artificial Neural Networks to provide the detection and isolation of impending subsystem 

failures. Bell, et al. (1992) developed, evaluated and successfully tested a tool that 

automates the reasoning portion of a Failure Modes and Effects Analysis. Healey (1993) 

discussed the use of both batch least squares and Kaiman Filters for system parameter 

identification as a means to detect performance change. Hurni (1997) used Simulink to 

model and simulate a tool for Failure Modes and Effects Analysis of the steering 

subsystem of an AUV. And finally, Melvin (1998) proposed the use of model-based 

observers for the detection of fault induced dynamic signals in the diving, steering, and 

roll control systems of the Naval Undersea Warfare Center's experimental "21 Unmanned 

Underwater Vehicle (UUV)". A model was designed in Simulink and was used to 

simulate numerous vehicle behaviors and detect for faults in the control systems. Other 

works for applications of process control and aircraft flight control are discussed by 

Patton (1997) and Mangoubi (1998). 



This work will concentrate on the steering subsystem fault detection of the 

21UUV. The basis for fault detection lies in the generation of residuals being the 

difference in a sensor-measured value and a value estimated by the system model. For 

instance, if a control state were completely measurable by some sensor signal, y(t), then 

its comparison to the model's estimated state, y(t), would produce a residual difference, 

v(t), if the two were not of equal value.   Written algebraically, a residual is simply 

represented as, 

v(t) = y(t)-y(t). 

A simple graphical representation of this concept is shown in Figure 1.1. 
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Figure 1.1 Residual Generation Defined 



This basic definition of a residual is the founding concept of fault detection using model- 

based observer techniques. The understanding of this basic concept is vital to the 

purpose of improving upon the most recent fault detection and resolution methods. 

Unfortunately, the most recent research into fault detection and resolution by use 

of model-based observer residual generation produces somewhat unsatisfactory results 

because of its inability to properly suppress the inherent residuals generated due to 

maneuvering and system noise. As mentioned previously, Melvin (1998) utilized model- 

based observed residual generation to model and simulate fault detection and resolution 

in the 21UUV. Without proper real-time data from the 21UUV, actual residual analysis 

was not possible. Upon implementation of real-time 21UUV data into the model-based 

design, it is found that manually introduced faults cannot be resolved from the residuals 

generated by basic maneuvering and system noise. 

Due to the failure of this model-based observer design to adequately detect faults 

within the steering subsystem of the 21UUV, it is necessary to investigate the probable 

causes of this failure and to attempt to improve and/or eliminate them. Due to the 

complexity and exactness of the model of the 21UUV, it is possible that inaccuracies in 

the hydrodynamic coefficients that form the basis of the 21UUV model will introduce 

errors into the subsystem processing of residuals for maneuvering.   Also of concern is 

the uncertainty in the system noise matrix, Q, and the measurement noise matrix, R, in 

the model-based observer. If chosen correctly, the Q and R matrices may significantly 

compensate for the maneuvering and system noise responsible for adding to the 

generation of excessive residuals in the steering subsystem. This thesis will then 

investigate the uncertainties in the hydrodynamic coefficients of the system model and 



will couple the use of Kaiman Filtering with model-based observer residual generation to 

accurately detect manually inputted faults in actual 21UUV data. 

B.       SCOPE OF THIS WORK 

Due to the enormous amount of previous research conducted in the area of fault 

detection and resolution, it is noted that the problem in autonomous fault detection is very 

complex and intriguing. Due to the assistance of the Naval Undersea Warfare Center, the 

sensor measurements from an actual mission run of the 21UUV are available for this 

work. This thesis will have the distinct advantage of developing techniques and methods 

for fault detection and resolution that can be directly evaluated against actual 

performance parameters. The purpose of this thesis is four-fold: 

1. To evaluate the performance of the previously developed model-based observer 

for residual generation of the 21UUV's steering subsystem. With the use of 

actual 21UUV data, manual faults will be implemented into the data run and it 

will be ascertained whether or not this model could successfully distinguish 

between a fault and a normal maneuver. 

2. To optimize the uncertain hydrodynamic coefficients that define the dynamics and 

input matrices of the 21UUV's steering subsystem model. Utilizing the optimized 

hydrodynamic coefficients as evaluated over a given data interval, residual 

reduction will be quantified and further fault detection will be investigated. 

3. To implement Kaiman filtering into the steering subsystem residual generation 

process of the 21UUV. Relative error reduction will be quantified and fault 

detection will be investigated by use of this method. Optimization of the Q and R 



matrices of the Kaiman filter will be accomplished and the resulting relative error 

reduction will allow for accurate fault detection. 

4.   To implement a fault detection and resolution algorithm into the steering 

subsystem and evaluate the sensitivity and time lapse to detection of an actual 

fault. 

Chapter II will explain the types of faults experienced in autonomous vehicle 

systems and will discuss the different methods for fault detection and diagnosis in a 

subsystem. Also included in this chapter will be the derivation of a comprehensive 

steering subsystem model-based observer for the 21UUV and its associated steering 

observer residual detector. 

Chapter III will investigate the performance of the previously designed model- 

based observer for residual reduction of actual 21UUV sensor measurement data. 

Manually implemented faults will be evaluated in the generated residuals and a 

determination will be made whether fault detection is possible using this model design. 

Also included in Chapter III is a description of 21UUV steering dynamics and proposed 

fault detection architecture by Healey (1998). 

Chapter IV will consist of the investigation of the uncertainties of the 

hydrodynamic coefficients forming the basis of the steering subsystem model of the 

21UUV. An optimization of the control and input matrices of the steering subsystem will 

produce values of hydrodynamic coefficients that reduce the residual generation of the 

model-based observer design. Again, analysis will be performed on the ability of the 

improved model to detect faults in a given set of sensor measurement data: 



Chapter V will introduce the use of Kaiman filtering into the residual reduction of 

the steering subsystem. A performance index will be proposed which allows for the 

optimization of the Q and R matrices of the Kaiman filter. By using the performance 

index, relative error magnitudes due to maneuvering will be reduced while relative error 

magnitudes due to faults will increase. Fault detection will be shown to be possible by 

the use of this optimized Kaiman filter design. 

Chapter VI will expound upon the fault detecting characteristics of the optimized 

Kaiman filter design by using a fault detect algorithm to deterrnine system sensitivity to 

imposed faults and subsequent time-to-detect for faults. 

Chapter VII will contain conclusions of this work derived from Chapter's III, IV, 

and V and will provide recommendations for further study in this area of fault detection. 



II.       DESCRIPTION OF FAULTS AND ASSOCIATED DETECTION 
TECHNIQUES 

Due to the difficult environment in which an autonomous vehicle may operate, it 

is necessary to have reliable and robust subsystems that are capable to accurately detect 

faults whenever present. The ability to detect faults will increase mission reliability by 

giving the autonomous system the opportunity to mitigate these faults on line and 

continue with its assigned mission. If a fault were left undetected, the degradation of 

mission performance would occur at a rate corresponding to the severity of the fault. Left 

alone over time, this degradation may lead to complete mission failure or even system 

loss, given a sever fault. The purpose of this chapter is to define various fault types and 

to describe methods of fault detection and diagnosis. Since the steering subsystem of the 

21UUV will be studied in this work, a comprehensive model of the steering design will 

be included. 

A.       TYPES OF FAULTS 

In the analysis of fault detection, two types of faults are identified as the majority 

of faults most common to subsystem failures. These two fault types are listed below. 

1. Environmentally Induced Faults 

Environmentally induced faults are faults that derive from varying signals caused 

by the effect of environmental conditions on the performance of the system. Such 

dynamic signals may arise from seaway wave action on the vehicle and the inability of 



the sensor suite to accurately detect vehicle motion. These dynamic signal faults are 

commonly defined as disturbances and are not technically malfunctions in the subsystem. 

2.        System Induced Faults 

System induced faults are faults that are incurred from hardware and software 

failures in the vehicle's subsystems. Hardware failures may include the loss of a fin or 

the disabling of a sensor. Software faults occur from the failure of the modeled system 

and its operational programming to execute according to design. Computer hardware 

configuration malfunction may also cause operational failure. 

B.        MAGNITUDE AND NATURE OF FAULTS 

The magnitude and introduction aspect of a fault may be characterized by one of 

two aspects. One characterizing aspect of a fault is its incipient or developing nature over 

a long period of time. This aspect of a fault may arise as a result of a slow degradation in 

the performance of one of the vehicles measurement sensors. Dependent upon the 

degradation rate of the subsystem over time, the ability of the autonomous system to 

detect an incipient fault is difficult, at best. It is proposed that some graceful degradation 

of system performance may be allowable as long as partial subsystem control is 

maintained for the entirety of the mission. 

The second characterizing aspect of a fault is the abruptness at which a signal 

varies in a short period of time. A large 'jump' in signal magnitude may be indicative of 

a sudden hardware failure or sudden loss in system control. Such faults are relatively 

easy to detect as long as the magnitude in the increased signal stays relatively large over a 
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set time period. Large spikes in signals may not be directly related to faults if the signal 

increase was due to an anomalistic reading of the sensor suite. These large spikes have to 

be filtered out of the overall signal response analysis in order to ininimize the occurrence 

of'Talse detects". 

C.       TECHNIQUES FOR FAULT DETECTION AND DIAGNOSTICS 

Fault detection and diagnostics may be classified into three categories: 1) Limits 

and Trends Analysis, 2) Model -Free Detection, and 3) Model-Based Detection.    The 

following is a description of the three methods of fault detection and diagnostics. 

1.        'Limits and Trends' Analysis 

As described by Healey (1998), a survey of fault detection and diagnostic 

methods indicates that alarms can be easily monitored if signals remain static and slow 

changing throughout a defined time period. This is accomplished by using 'limits and 

trends' analysis. The actuation of an alarm or 'detect' occurs when a single signal 

exceeds a preset threshold. Once an alarm is actuated, information pertaining to the 

associated fault may be passed on to fuzzy logic inference systems for potential 

reconfiguration of the subsystems. An example is excessive motor temperature. 

Unfortunately, the transient nature of dynamic signals makes limits and trends 

analysis invalid. Dynamic signals tend to exceed a threshold, but to later come back into 

range of preset bounds. This causes the use of thresholding alone to be insufficient for 

proper fault detection clarity. Dynamic signals that would produce such transients would 

include a broken fin, a sheered propeller shaft, or a ballasting failure. 
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2.        Model-Free Detection 

'Model-free' detection may be employed for certain dynamic signal analysis. 

Model-free detection takes samples of the given dynamic signal and extracts constant 

features of the signal and compares them to preset threshold levels. Model-free methods 

are useful to detect frequency components in servo error signals and could be used to 

identify levels of seaway induced disturbances considered as faults, Newland (1993) & 

Healey (1998). Spectrum analysis and condition based monitoring are examples. 

3.        Model-Based Detection 

Model-based detection utilizes the analysis of residuals produced from model- 

based observer design to detect the presence of a fault. Faults may arise from a fouled 

actuator, or a failed sensor. As previously described in Chapter I, a residual is the 

difference between a sensor measured value and a value estimated by the system model. 

By the generation of residuals, fault detection can be accomplished by analyzing the 

resultant residual value associated with particular state values of motion for the vehicle. 

Excessive residual generation may be deemed as the result of a fault in the subsystem. 

Model-based methods have better ability to detect dynamic signals developed 

from autopilot errors. Autopilot errors tend to be large when steering to new course, but 

lessen when the vehicle achieves desired course. The residuals generated from model- 

based observers are not sensitive to servo errors caused by command changes and they 

respond primarily to non-ideal loads, disturbances from waves, and sensor signal errors, 

Melvin(1998). 
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D.       STEERING SUBSYSTEM MODEL-BASED OBSERVER DESIGN FOR 
21UUV 

The steering subsystem and associated model-based observer of the 21UUV are 

designed using the methods outlined in Healey (1995) and Healey (1998). Due to the 

analysis of work previously shown by Melvin (1998), the following steering observer 

residual detector theory and application are taken from his work in order to preserve 

continuity and substantiate this work's claim on performance inadequacies in fault 

detection for that given design. 

Although this work concentrates mostly on the steering subsystem of the 21UUV, 

it is necessary to state the assumption that the 21UUV is controlled by four main 

subsystems, which are uncoupled, and use six degrees of freedom. This defines four 

autopilot controllers - the steering, diving, roll and speed control systems. 

Consequently, there are four observer based residual generators, with one generator for 

each controller. Each observer based residual generator would generate and process 

residuals for each corresponding subsystem. 

Each subsystem is modeled as a non-interacting Linear Time Invariant system: 

S:(A,B,C,D)eRn". 
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1.        Theory 

The steering subsystem dynamics for the 21UUV are modeled by the following 

equations of motion: 

x'(t) = fyr(t)H)Mt)]l 
u(t) = S/t) 

±(t) = Ax(t) + B u(t) + Efa (t) + Fd ft); 

yft) = Cxft) + fsft); 

The state variables vr, r, and ^are the vehicles' sway velocity (side slip), yaw 

rate, and heading angle, respectively. B and E are the input vectors for the control planes 

and F is the input vector for disturbances from waves and currents. The variable 8s(t) is 

the steering command input and fs(t) represents added forces caused by sensor errors. We 

assume that the inertial system of the 21UUV is of high quality and all state variables are 

measured with little noise. The output matrix, C, is then taken as identity. 

A model based observer can be formed from the given idealized subsystem 

dynamics: 

x'(t) = [vr(t),r(t),¥(t)J; 
n(t) = Ss(t) 

±(t) = (A- KC) i(0 + B u(t) + Ky(t); 

v(/)=y(0-C£(r). 

The residuals are represented by the vector v(t) and are the differences between 

the sensor measured values and model-based predictions for side slip, yaw rate, and 
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heading states. A state observation error, sx, can then be defined as the difference 

between the fully measurable state equation and the model-based prediction state 

equation. 

£x (0 = (x- i) = {Ai(r) - Ai(/)} + (B- BMO + E f, (0 + Fd(0 - K{y(0 - Cx(t)} 

y(0 = Cx(0 + fs; 
£x(0 = (A-KC)8x(0 + Ef,(0 + Fd(r) + Kfs(0 

where....v(t) = Ce(t) + fs (t). 

The residual generation system may be viewed as a system subject to u(t) and y(t) 

as inputs with v(t) as output such that it has a system transfer function: 

v(s) = C [si- (A- KC)!1 {Ef, (s) + Fd(s) + Kfs (s)} + f, (s). 

Note, if CAj'E = 0, then fa does not appear in v(s) and f, are undetectable in v(s). 

Also, if E=F; fa and d are indistinguishable; see Patten and Chen (1998). 
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2. Application 

For a slower speed of 6 feet per second, the model of the 21UUV (to be described 

in detail in Chapter III) has dynamics (A) and input matrices (B) of: 

A = 

-0.1140   -2.3282   0 

-0.0649   -0.3015   0 

0 1 0 

0.3308 " 

B= -0.1224 

0 

For the example used in Melvin (1998), the wave amplitude was set at 2ft, the 

autopilot for depth control was of sliding mode design, and the placed poles included a 

single pole at the origin. The resulting gains for the sliding mode controller were: 

X = [-0.4   -0.41   Oj 

* = [0.5762   -1.6663   0} 

y= [0.0164   0.8804   0.4740]. 

The Matlab command 'place' was used instead of Linear Quadratic Estimation in 

order to ensure real numbers were generated for the observer poles vice complex poles 

and eigenvectors. The observer poles were placed close to the control poles, [-0.2, -0.21, 

-0.22]. The observer poles were found to be: 

K   = 

" 0.0860    -2.3282       0 

-0.0649   -0.0915       0 

0 1 0.2200 
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The observer was modeled by the state-space equation: 

x'(t) = A0x(t) + Bouo(t) 

v(t) = Cox(t) + D0u0(t) 

with  

A0=A-K0'C 

B0=[B   K,'] 
c0=-c 

Do= [zerosQ,\)   eyeQJ)] 

The Matlab file developed and used by Melvin (1998) to generate the steering 

observer and steering observer residual detector, "steerobsdes.m", is included in 

Appendix A. 

3.        The Effect Of Model Uncertainty 

In the above analysis, it is assumed that the system model is perfect. This means 

that the true A, B pair for the vehicle is indeed the A, B pair used to generate the residual. 

This is not likely to be the case and if we define 

[A,B] => true system pair, and 

[A,B] => model-used pair, then 
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the residual is now defined by 

v(s) = C[sl- Ac r1 {Efa (s) + 5 Ax(s) + 8B 5S (s) + fd(s) + Kfs (s) + fs (s)} 

where 

SA = (A-Ä), 

8B = (B-B). 

The problem lies in finding an A c for the residual generator so that 

Efa (s) * 8 Ax(s) + 8 B Ss (s). Defining, 

v^QsI-AJ-'Ef^s) 

v2 = C(sl- Ac )"1 [6 A(£) + 8B 8s(s)], 

we see that v2 is mostly driven by maneuvering where 8s,i(s) are non-zero while vy is 

the residual generated by an actual fault. Distinguishing v, and v2 is not easy unless 

6A W«ll*|. 

II       llll        II Ä I II ä II A 

It is the objective of this work to rninirnize |E|f,||- 8A||x(s)| for all x(s) during 

maneuvers. 
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III. MODEL- BASED OBSERVER PERFORMANCE USING ACTUAL 
21UUV DATA 

A.       FAULT DETECTION ARCHITECTURE FOR 21UUV 

Healey (1998) has proposed a fault detection architecture for 21UUV. This 

architecture will be briefly described here in order to show existing techniques that will 

utilize this work's advancements in fault detection and resolution. 

The proposed fault detection architecture is based upon using subsystem detection 

circuits to look for fault signals of specific magnitude and duration. If both magnitude 

and duration levels exceed threshold levels, the fault detector declares a fault. This 

architecture will respond appropriately to mitigate the fault by linking the associated fault 

signal with pre-set response actions guided by fuzzy logic methodology. 

Robustness of fault detection is increased significantly when residuals produced 

from multiple sources are compared together for an overall assessment of system health. 

The sources generating residuals for this architecture are the fin stroke detectors, servo 

error detectors, observer residual detectors, and wave activity detectors. Measurements 

are produced from the vehicle's sensor suite and fed back into the controller and 

associated fault detectors. The controllers produce control inputs to the vehicle and also 

send control inputs to the fault detectors. The fault detectors take the inputs from the 

controllers and compare them with sensor outputs to produce residuals. The fault 

detectors analyze the resultant residuals and determine if a fault is present. Fault signal 

attributes are then transferred to the fuzzy inference system. The fuzzy inference system 

makes 'judgments' based on fuzzy logic rules as to the severity of the fault and 

promulgates command adjustments to the controllers in order to compensate for the fault. 
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If the fault is judged to be 'too severe', the fuzzy inference system transfers health 

assessment responsibility to a higher level of authority. An illustration of the proposed 

fault detection architecture for 21UUV is shown in Figure 3.1. 

Health Assessment \ 
to Higher j 
Authority / 

> < 
Controller Input 

^       v ^ 

Vehicle & , 
Sensor Suite 

Sensor Outputs  ^ yS* s 
1 ■Si ft* Controllers 

1 Command Adjustments y * 1 M 

\ \ 8 

Fuzzy 
Inference 

System 

j      Fault 

\          ^ f \ Ö 

Faults 
Detector ^Information 

k. 

/" 
A 

1. Fin Stroke Detector 
2. Servo Error Detector 
3. Obs. Resid. Detector 
4. Wave Act. Detector 

Figure 3.1 Fault Detection Architecture w/ Fuzzy Inference System for Fault State 
Resolution (Healey, 1998) 
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B.        DESCRIPTION OF 21UUV MODEL 

1. Development of 21UUV Steering Model 

As with all vehicles that 'fly' through a given fluid medium, there exist specific 

equations of motion defining the maneuvering and motion control of autonomous 

vehicles. For this work and the modeling of steering control for 21UUV, the following 

are considered: 

1. 21UUV behaves as a rigid body 

2. The earth's rotation is negligible compared to that of the vehicle when defining 
inertial acceleration components of the vehicle's center of mass 

3. The primary forces that act on the 21UUV have inertial and gravitational 
origins 

4. For marine vehicles, other sources of force are hydrostatic, propulsive, 
thruster, and hydrodynamic forces from lift, and added mass 

For the simplified case of rigid body motion for the steering model, we ignore the 

vertical plane of motion. In so doing, we significantly simplify the equations of motion 

(EOM) by setting the following to zero: (see Healey 1995, ME 4823 notes for 

nomenclature, {http://web.nps.navy.mil/~me/healey/papers/ME4823.pdf.}) 

wr=0, 
p=0, 
q=0, 
Z=0, 
<fi=0, 

9=0. 
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The resulting motions of interest for the steering model become [ur, vr, rj. For nominal 

steady state conditions with steady forward motion, we can assume ur = U0, the forward 

speed of the vehicle. 

The EOM then become (Healey 1995): 

ur = = u0 
mvr = -mU0r + AYf(t) 

IJ = ANf(t) 

¥ = r 

X = ■ U0 cosy/- vr sin y/ 4 ua 

Y = U0 sin y/ + v; ,cosy/ + Ucy 

Through the assumption of 'small' motions, the fluid forces under the conditions 

of 'flight' are linearized using a Taylor series expansion to produce body force 

'hydrodynamic coefficients'. These hydrodynamic coefficients depend on the shape 

characteristics of the vehicle and can determine the vehicle's natural stability of motion. 

These coefficients are often assumed to be constant, but this assumption has limited 

applicability. 

The primary dynamics equations for steering and directional stability of the 

vehicle include the sway, v, and yaw, r, motions. If we neglect the effects of surge 

motion changes and roll motion coupling and use the linearized constant coefficient force 

model, we get the dynamic response and the path of the vehicle: 
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Dynamic Response of the Vehicle 

mvr = -mU0r + YirVr+Yvvr+Yff + Yrr + Ygör(t) 

IJ = Nir vr + NVr vr+N,r + Nrr + Ns Sr (t) 

Path of the Vehicle 

\j/ = r 

X = U0 cosy/- vr sin y/ + Ua 

Y = U0 sin y/ + vr cosy/ + U^ 

The state vector for the steering subsystem model can be written as: 

x = [v, r, y/J. 

The matrixes form of the sway and yaw equation coupled with heading can be written in 

expanded definition as: 

m-Yir -K 0 V \ 

-^ !.-*> 0 r = K 
0 0 1 V 0 

(3x3) 
M 

(3*1) 
X 

Yr-mU0 

N. 

o" Vr V 
0 r + ^8 

0 y. 0 
8,(0 

(ixi) 

3x3) 
AA 

"1   0   o" Vr 

0   1    0 r 

0   0   1 y. 

(3x1) (3x1) 
x BB 

(3x3) (3x1) 
C x 
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For the 21UUV, the normalized hydrodynamic coefficients listed in the above state 

matrixes are given as: 

m = 88.95 ISslugs; 

I^ 2632.47slugs -ft2 

K = 1.041e-02; 

7,= 1.753«?-04? 

#,= 1.753*-04$ 

N, =-7.504*-04; 

7v = -7.406*-03; 

Yr = 2.655e-03; 

NVr = -6.746e-03; 

#r =-1.477e-03; 

78=4.216*-03; 

JV5=-2.176*-03. 

The values m and Is are mass properties, while the remaining values are normalized 

taken from Healey (1995). The steering subsystem is modeled as an independent system 

following the equation form: 

i = f(x,u) 

y = g(x) 
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Represented in state-space form with linearized characteristics, the steering subsystem 

appears as: 

i = [M-yAA]x+[M-lBB)u 
A B 

with... 

M=mass matrix; 
AA=state matrix; 

BB=control matrix; 

and... 
A = [M-'AA] 

(3*3) 

B = [M-lBB] 
(3*1) 

2. 21UUV X-fin Configuration 

It is necessary at this point to give a quick description of the X-fin Configuration 

of the 21UUV. The 21UUV utihzes a four fin configuration in the shape of an 'X' to 

perform all manners of maneuvering. Figure 3.2 is a simple schematic of the stern view 

of the fins and their numbering sequence. 

Figure 3.2 Stern-view Aspect of X-Fin Configuration on 21UUV 
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The fins constitute the control planes for all the diving, steering, and rolling maneuvers of 

the vehicle. The fins are coupled together by gain matrixes in the control block of the 

vehicle's steering subsystem. Appropriate signals are generated which initiate rotation of 

each fin in a manner to produce the desired maneuver. An example of fin deflection for a 

steering command is shown in Figure 3.3. The positive steering command, 8r, calls for a 

turn to port (left-hand turn). Arrows represent the directional forces on the fins. The 

arrows are drawn across the fin in the direction of acting force. The vertical components 

of force acting on the fins are canceled out due to the cancellation of static forces in 

opposition in the vertical plane. The remaining horizontal force components add together 

to produce a resulting turn to port. 

Sr=Port Turn 
Figure 3.3 Steering Command Response to Port Turn 
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For a turn to starboard, the fins would react in the opposite direction in order to produce 

horizontal fin forces acting in the starboard direction. The individual fin commands are 

obtained through the multiplication of the generalized fin commands with the following 

gain matrix, 

Individual 
Fin 

Commands 

1 -1 1 

1 1 1 
-1        1 1 
-1      -1 1 

K-Gain 
Matrix 

Generalized 
Fin 

Commands 

Note also, that in order to obtain the generalized fin commands the individual fin 

commands are multiplied by the transpose of the gain matrix as follows, 

Generalized 
Fin 

Commands 

0.25     0.25   -0.25 -0.25 
-0.25   0.25     0.25 -0.25 
0.25     0.25     0.25 0.25 

Transpose(K) 

5, 
5, 

54. 
Individual 

Fin 
Commands 

c. 21UUV DATA ANALYSIS 

1. Parameters and Characteristics of the Run 

The 21UUV data used in this work was graciously provided for by the Naval 

Undersea Warfare Center. The 21UUV data run is comprised of a myriad of sensor 

measurements taken over the course of a 36.5-minute exercise. The 21UUV was capable 

of recording measurements every 0.1 seconds throughout the run. The vehicle generated 
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over 21900 data points for the overall run. The track of the vehicle reveals multiple 

course changes that allowed for successive waypoint interception throughout the area of 

operation. The course legs tend to overlap themselves as the vehicle goes from one 

waypoint to another. Of interest for this work was the vehicle's ability to accurately 

record the vehicle's heading, y/, the vehicle's yaw rate, r, and the vehicles sideslip 

velocity, v. These three vehicle motions form the basis for the state vector compromising 

the vehicle's steering subsystem With these three measurements and the velocity of the 

vehicle, residuals may be generated using the previously developed model-based 

observer method. 

2.        Track Analysis of the Run 

In order to properly analyze the data obtained from the 21UUV's run, the data 

must first be 'processed' to provide useful information. It is very important to first 

convert all measurements into radian form This is an obvious step, but if not completed, 

the analysis of the data would be in error. Also of extreme importance in the analysis of 

the data is the 'Rap Count' measurement performed by the vehicle. As the vehicle 

maneuvers through its expansive run, its heading measurement often reaches a minimum 

angle of-180° or a maximum angle of+180°. If the heading of the vehicle approaches 

either maximum or rninimum values of+180° or -180° and continues through these 

values of heading, the measurement will leap 360° and continue in the same direction but 

from the opposite heading value (either +180° or -180°). This sudden leap in heading 

measurement tends to cause the generated residuals for heading to increase significantly. 

This is due to the steering observer's 'estimation' that the next measurement will be 
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continuous and proceed in the direction of the previous measurement and not leap 360° in 

such an abrupt manner. This abrupt measurement characteristic of the measurement suite 

on 21UUV is shown in Figure 3.4. Here, an unprocessed measurement data set for 

heading is displayed over its respective time interval of 1300-1500 seconds. As can be 

seen from the figure, a sudden and abrupt leap in heading measurement often occurs 

when the vehicle maneuvers beyond +180°.   This sudden leap is very detrimental to any 

residual analysis of the data and must be corrected if useful residual generation is to be 

performed. 

Rap Count for Heading Measurement (deg) 
200 

150 

100 

50 

d) 

O) 
C 
'S 
TO 
<b 
X -50 

-100 

-150 

-200 

V K A A r, ,/ 1 

\j 

/ 
r\ /\ L V 

1300 1320  1340 1360  1380  1400 1420 1440 1460  1480 1500 
Time (sec) 

Figure 3.4 Rap Count Analysis of Heading Data 

Note for Figure 3.4: Source Code Name - "rap_count.m" 
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A simple Matlab code is implemented as a preprocessor for all subsequent model- 

based observer and residual generation analysis in order to alleviate the problem of rap 

counting. This code, "rapcount.m', is found in Appendix A. Figure 3.5 shows the same 

data interval for heading plotted with rap counting removed and superimposed over the 

original rap counted data measurements. As can be seen from this figure, the resultant 

heading measurement plot is continuous and would not cause any excessive residual 

generation due to abrupt changes from not rap counting. 

Continuous Heading Measurement w/o Rap Counting 
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Figure 3.5 No Rap Count Plot Compared w/ Rap Count Plot 

Note for Figure 3.5: Source Code Name - "rapcount.m" 
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The actual longitudinal and latitudinal track characteristics may be reconstructed 

for proper analysis of the vehicle's run by use of dead-reckoning techniques. Using a 

Matlab code called "dead.m", which is contained in Appendix A, the track is plotted as 

shown in Figure 3.6. It is obvious from this plot that the vehicle drove to numerous 

waypoints in the execution of the run. The overshoot for each turn of the vehicle is also 

apparent from the plot. Since residual generation tends to break down in areas of high 

maneuvering, Figure 3.6 will be used to isolate five locations for further residual analysis 

using model-based observer techniques. 

The data is initially broken down into 'legs' containing approximately 1500 data 

points each. The legs are delineated with specific markers in order to make tracing the 

vehicle's run easier. Along with the arrows indicating the direction of the vehicle, the 

plot's legend specifies which marker relates to which leg of the 21900 data point run. 

The track analysis begins at data point 3000 because data prior to this point was 

taken while the vehicle was without forward motion. The plotted track of data set 1-3000 

shows errant behavior on the part of the vehicle and it actually displays backward motion 

of the vehicle at given times. The purposeful withdrawal of this data interval has no 

impact whatsoever on the analysis of fault detection for the remainder of the run. 
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x104 Track Analysis Using Dead-Reckoning Technique 

-6000     -4000     -2000 0 2000       4000       6000 
Latitudinal Movement(ft) 

8000      10000     12000 

Figure 3.6 Dead-Reckoning Solution of 21UUV Track 

Note for Figure 3.6: Source Code Name - "dead.m" 
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3.        Data Sets for Residual Analysis (Maneuvering Specific) 

As noted earlier, a common problem with using residual generation for fault 

detection is the increase in residuals during maneuvers. The purpose of a model-based 

observer is to estimate the next set of state variables of motion during the vehicles run. 

Given this task, it is very difficult for the observer with model errors to accurately 

estimate states that are rapidly changing due to large changes in heading. Due to the 

inability of the observer to exactly estimate the next value for the state variables, the 

resultant residuals tend to increase throughout and shortly after the performance of a 

maneuver. This increase in residuals from v2 (defined in the last chapter) makes 

subsequent fault detection difficult. With large increases in the residual generation of the 

steering subsystem during maneuvering, false-fault detects are very common using 

current fault detection schemes. This being the case, it is imperative that this work 

concentrates on the specific problem of detecting faults throughout maneuvering specific 

intervals in the vehicle's run. If accurate and reliable fault detection can be accomplished 

during vehicle maneuvering, satisfactory fault detection for the steering subsystem can be 

proven to be attainable. 

For this work, five intervals of data will be analyzed in order to properly design 

fault detection techniques. Of the five intervals, four will include large changes in 

heading and one will encompass an interval where constant heading was maintained for a 

specified distance. The intervals of evaluation will be taken from the original track and 

the values of the state variables for the steering subsystem (sideslip velocity, yaw rate, 

and heading) will be graphed to display behavior characteristics over the course of the 

data interval. 
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Figure 3.7 Data Set Interval One 

Note on Figure 3.7: Source Code Name - "deadintl .m" 
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Figure 3.8 Data Set Interval Two 

Note on Figure 3.8: Source Code Name - "dead_int2.m" 
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Interval Three for Residual Analysis (Data: 9250-10250) 
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Figure 3.9 Data Set Interval Three 

Note on Figure 3.9: Source Code Name - "dead_int3.m" 

interval Fourfor Residual Analysis (Data: 10750-11500) 
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Figure 3.10 Data Set Interval Four 

Note on Figure 3.10: Source Code Name - "dead_int4.m" 
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Interval Five for Residual Analysis (Data: 18500-20500) 
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Figure 3.11 Data Set Interval Five 

Note on Figure 3.11: Source Code Name - "dead_int5.m" 

Each data set interval has its own characteristic state variable response. Figures 

3.12, 3.13, and 3.14 display the sideslip velocity, yaw rate, and heading of each data set 

interval, respectively. As can be seen from these plots, there is significant variation and 

fluctuation in the state variables that is resultant of the high degree of maneuvering being 

conducted by the vehicle. These figures are included here in order to show the 

tremendous task that must be accomplished in finding faults within the given data set 

intervals. 
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Sideslip Velocity for Data Set Intervals 
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Figure 3.12 Sideslip Velocities for Each Data Set Interval 

Note for Figure 3.12: Source Code Name - "stateresp.m" 
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Yaw Rate for Data Set Intervals 
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Figure 3.13 Yaw Rates for Each Data Set Interval 

Note for Figure 3.13: Source Code Name - "stateresp.m" 
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Heading Angle for Data Set Intervals 
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Figure 3.14 Heading Angles for Each Data Set Interval 

Note for Figure 3.14: Source Code Name - "statejresp.m" 
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D.       RESIDUAL GENERATION OF NOMINAL STEERING OBSERVER 
DESIGN 

One of the scopes of this work is to analyze the performance of the model-based 

observer used to generate residuals as designed by Melvin (1998). It is necessary to plot 

the residuals produced by this design actual 21UUV sensor data. The residuals generated 

using this design will be evaluated over the previously specific intervals. Again, it is 

important to note the magnitude of residuals produced during the maneuvering specific 

intervals of this data set. Initial viewing of the residuals generated over these intervals 

will lead to a better understanding of how the act of maneuvering the vehicle increases 

the residual output of model-based observer. 

Figures 3.15, 3.16, and 3.17 are the residuals produced by the nominal model- 

based observer for sideslip, yaw rate, and heading, respectively. Each data set is 

represented on the residual plots and is labeled with respect to its interval of evaluation. 

The important concept to take from these plots of model-based observer residuals is that 

the residuals produced by maneuvering of the 21UUV are very large and without 

periodicity. The propensity of vehicle maneuvering to increase the generation of residuals 

is very pronounced in each data set shown. Thus, in order to detect a fault in the steering 

subsystem, proper resolution of the fault through the inherent residuals of the system 

must occur. The implementation and resolution characteristics of previously designed 

model-based observer techniques will be the subject of the next section in this work. 
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Sideslip Residuals for Each Interval (Observer Design) 
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Figure 3.15 Sideslip Velocity Residuals for Observer Design 

Note for Figure 3.15: Source Code Name - "Odlrn" 
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Yaw Rate Residuals for Each Interval (Observer Design) 
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Figure 3.16 Yaw Rate Residuals for Observer Design 

Note for Figure 3.16: Source Code Name - "OdLra" 
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Heading Residuals for Each Interval (Observer Design) 
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Figure 3.17 Heading Residuals for Observer Design 

Note for Figure 3.17: Source Code Name - "Odl.m" 
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E.        IMPLEMENTATION OF FAULT INTO MODEL-BASED OBSERVER 
DESIGN 

1.        Description of Manual Fault Implementation 

The introduction of a fault into the model-based observer design was 

accomplished by adding a 0.4-radian deflection into the rudder command of the steering 

subsystem. The 0.4 radian deflection command reflects a situation where a fin is stuck in 

a full stroke position. This additive 0.4-radian input command should produce residuals 

that clearly indicate a fault. By inhibiting the vehicle to reach proper heading commands, 

the stuck fin would generate sensor measurements that were not estimated by the 

controllers. The difference between the estimated state values and the measured state 

values should produce adequate residual response that can be seen throughout the 

residuals generated by the observer as shown in Figures 3.15, 3.16, and 3.1.7. 

Revisiting the observer equation for estimation of states, the additive input of the 

malfunctioning fin appears as the new variable^. Written in state-space form, the new 

observer equation and subsequent residual equation would become: 

± = (A-KC)i+B(M + /,) + Ky; 

i = A0x+[B:K "(« + /,)" • 
> 

L  y   J 
with.... 

v = (y-Cx) = -Coi+Do 
'(«+/,)" 

• 

L      J       J 
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five plots chosen to be included in this work are indicative of the overall residual 

generation by the fin fault throughout the entire data set (data: 3000-21900). Each data 

set is represented in the following plots. There were four different scenarios of fault 

implementation represented in the model-based observer residual plots. The data set and 

its respective scenario for fault implementation are as follows: 

Data Set: 5200:5800 - Fault occurs during the maneuver and remains constant 
beyond maneuver completion. (Figure 3.18) 

Data Set: 7500:8750 - Fault occurs before the maneuver and remains constant 
beyond maneuver completion. (Figure 3.19) 

Data Set: 9250:10250 - Fault occurs during the maneuver and is corrected prior 
to maneuver completion. (Figure 3.20) 

Data Set: 10750:11500 - Fault occurs before the maneuver and is corrected prior 
to maneuver completion. (Figure 3.21) 

Data Set: 18500:20500 - Fault occurs during the maneuver and is corrected prior 
to maneuver completion. (Figure 3.22) 

The Matlab code that generates the following plots is 'Odlfaults.m' and is 

contained in Appendix A. 
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Sideslip Residuals w/Fault Implemented (Data:4800-5800) 
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Figure 3.18 Sideslip Fault Detection Using Observer Design (Data: 4800-5800) 

Notes for Figure 3.18: Source Code Name - "Odlfaults.m" 
Coefficients Used for Residual Generation: Original 
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Yaw Rate Residuals w/Fault Implemented (Data:7500-8750) 
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Figure 3.19 Yaw Rate Fault Detection Using Observer Design (Data: 7500-8750) 

Notes for Figure 3.19: Source Code Name - "Odlfaults.m" 
Coefficients Used for Residual Generation: Original 
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Heading Residuals w/Fault Implemented (Data:9250-10250) 
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Figure 3.20 Heading Fault Detection Using Observer Design (Data: 9250-10250) 

Notes for Figure 3.20: Source Code Name - "Odlfaults.m" 
Coefficients Used for Residual Generation: Original 
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Figure 3.21 Sideslip Fault Detection Using Observer Design (Data: 10750-11500) 

Notes for Figure 3.21: Source Code Name - "Odlfaults.m" 
Coefficients Used for Residual Generation: Original 
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Heading Residuals w/Fault Implemented (Data:18500-20500) 
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Figure 3.22 Heading Fault Detection Using Observer Design (Data: 18500-20500) 

Notes for Figure 3.22: Source Code Name - "0_dl_faults.m" 
Coefficients Used for Residual Generation: Original 
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F.        CONCLUSIONS 

A model-based observer design attempts to accurately estimate the state variable 

values of the steering subsystem through predetermined gain matrix calculations. This 

gain matrix is calculated by placing observer poles at desired locations that provide good 

observer speed and accuracy. Uncertainty in the model coefficients will causes excessive 

residual generation in the subsystem because the observer will be unable to adequately 

predict varying values of the state variables throughout a maneuver-intensive vehicle run. 

The residuals generated during maneuvers are of greater magnitude and volatility than 

those generated during steady-state flight. These residuals 'mask' the residuals generated 

by a full-stroke fin failure. Without the ability to accurately and reliably detect a full- 

stroke fin fault, the current model-based observer design is inadequate for robust and 

reliable fault detection. 

Inaccuracies may be present in the hydrodynamic coefficients that form the 

dynamic and control matrixes of the steering subsystem. If such inaccuracies exist, 

improper modeling of the estimated dynamic and control matrixes will lead to excessive 

residual generation due to the increase in measurement differentials. Investigation into 

this possible cause of excessive residual generation is the focus of the next chapter. 
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IV. OPTIMIZATION OF VEHICLE MODEL HYDRODYNAMIC 
COEFFICIENTS 

A.       ANALYSIS OF DYNAMIC AND CONTROL MATRIX ERROR 

The failure of the original nominal model-based observer to properly generate 

residuals of small magnitude during maneuvering intervals inhibits the detection of 

subsequent steering subsystem faults. Without suppressing maneuvering generated 

residuals and without amplifying fault residuals that exceed threshold levels, it was 

difficult to discern fault residuals from fault-free residuals corresponding to normal 

vehicle operation. Obviously, a method must be developed to reduce the residuals 

generated during vehicle maneuvers. It is proposed that a portion of the increase in 

residual reduction during maneuvers originates from the inexact values of the 

hydrodynamic coefficients that constitute the dynamic and control matrixes of the 

steering subsystem model. Without exact values to formulate the dynamic and control 

matrixes of the steering subsystem, the observer model will fail to accurately estimate the 

values of state variables as the vehicle maneuvers in other-than-steady-state conditions. 

The increased difference between the measured and estimated values of the state 

variables will generate larger residual response and reduce fault detection possibilities. 

1.        Error Analysis of Steering Subsystem Model 

In order to understand the origin of errors resulting from inaccurate hydrodynamic 

coefficients in the steering subsystem model, it is necessary to revisit the method 

describing the state observation error, ex, as shown in Chapter II. The state observation 

error was previously defined as the difference between the fully measurable state 
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equation and the model-based predicted state equation. While this fundamental 

difference still holds true, the first derivation of the state observation error did not include 

the possibility of modeling inaccuracies within the dynamic and control matrixes, A and 

B, respectively. The original state observation error was shown to be: 

ii(t) = (±-±) = {A±(t)-A±(t)} + (B-B)u(t) + Efa(t) + ¥d(t)-K{v(t)} 

v(t) = y(t)-Cx(t); 

gives.... 

ex(t) = (A- KC)£, (t) + Efa (/) + Fd(f) + Kfs (/) 

with....v{t) = Csx(t) + fs (*); 

If differences between the measured and modeled A and B matrixes were considered, the 

resulting state observation matrix may be formulated as follows: 

E , (0 = (x- i) = {Ai(0 - Ax(»} + (B- B)u(t) + Efa it) + Fd(0 - K{y(r)} 

where....y(t) = v(t)_Cx(t); 

gives.... 

£, (t) = (Ä- KC)£X (0 + (8 A) x(0 + (5 B)u + Efa (/) + Fd(0 + Kfs (t) 

with....v(t) = CEx(t) + fs(t); 

8A and 8B are defined as the deviations in the dynamic and control matrixes of the fully 

measurable state equation and the model-based predicted state equation. The dynamic, or 

maneuvering error, is defined as the difference in the measured dynamic matrix and the 

estimated dynamic matrix, given as: 

8A = (A-A). 
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The control, or rudder error, is defined as the difference in the measured control matrix 

and the estimated control matrix, given as: 

8B = (B-B). 

It is proposed that optimization of the hydrodynamic coefficients that define the A and B 

matrixes will minimize the effects 8A and 5B have on the overall state observation error 

and will subsequently lower residual generation during maneuvers. By optimizing 

certain hydrodynamic coefficients over a given data interval, it is proposed that resultant 

coefficient values will more accurately represent the hydrodynamic characteristics of the 

vehicle while it maneuvers. A more accurate representation of the hydrodynamic 

characteristics of the 21UUV will greatly reduce residual generation. 

2.        Choice of Hydrodynamic Coefficients for Optimization 

The choice of which hydrodynamic coefficients to optimize comes from the study 

of the closed-loop, state-space representation of the steering subsystem This 

representation was shown to be: 

Mi = Ax+ B u. 
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The matrixes above can be defined using hydrodynamic coefficients as: 

M = 

m-Y,        -Yr       0 

-N>      In-N>   0 

0 0 1 

X     Yr-mU0 0 
NVr Nr 0 

0 1 0 

~r5 
B = 

0 

Simplifying the state-space equation by multiplying through by the inverse of M gives: 

X = [M-
,
A]JC + [M-

,
B]M 

A B 

Matrix A and matrix B are now re-defined as: 

A = [M1 A], 
(3x3) 

B = [M-'B], 
(3x1) 

with.... 

5A = 6[M-'A], 
(3x3) 

5B = 8[M'1B]. 
(3x1) 
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It is recognized that the coefficients that constitute the mass matrix M, are assumed to be 

relatively sound and do not add to the production of any significant error in the steering 

model. Of the coefficients that make up the control matrix, both mass, m, and forward 

velocity, V, do not need to be optimized, since both values are taken to be accurate. The 

remaining coefficients, which are suitable candidates for optimization, are Yv, Yr, Nv, Nr, 

Yg, and Ng. Yv and Yr are coefficients of hydrodynamic sway force induced by sideslip 

and yaw, respectively. Nv and Nr are coefficients of hydrodynamic yaw moment induced 

by sideslip and yaw, respectively. Y§ is a coefficient of linearized sway force produced 

by the rudder. N§ is a coefficient of yaw moment produced by the rudder. 

The values assigned to these hydrodynamic coefficients are non-dimensionalized 

when used in the steering model. These coefficients are optimized about the following 

given initial values: 

Tv=-7.406*?-03, 

rr=2.655e-03, 

Nv=-6J46e-03, 

Nr=-lA77e-03, 

y5=oc*(4.216e-03), 

JVs=a*(-2.176e-03). 

Yg and Ns are both scaled by a value 'a'. This coupling by a scalar value for these two 

coefficients reduces the overall number of optimized coefficients from six to five. 
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B.       OPTIMIZATION OF HYDRODYNAMIC COEFFICIENTS 

In order to proceed further with the optimization of the chosen hydrodynamic 

coefficients, the tool for which optimization will be accomplished shall be addressed 

here. 

1.        Matlab's Sequential Quadratic Programming Method 

Due to the number of chosen hydrodynamic coefficients from the dynamic and 

control matrixes, Matlab 's 'constr' function was utilized for optimization purposes. This 

function is used to find the constrained minimum of a scalar function of several variables 

starting with an initial estimate. Matlab's Optimization Toolbox (Branch and Grace, 

1996) contains all the information necessary to explain the methodology behind the 

function's algorithm The basics of the algorithm behind 'constr' are taken from the 

Optimization Toolbox and described here for background on the process by which the 

optimized coefficients can be found. 

'Constr' uses a Sequential Quadratic Programming (SQP) method for 

optimization. The SQP implementation includes three main steps to find the values for 

constrained nonlinear optimization. The three main steps are: 

• Solving a quadratic programming subproblem 

• Line search and merit function calculation 

• Updating the Hessian matrix to provide an improved quadratic 

approximation 
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a.       Quadratic Programming Subproblem 

The first step in the SQP is to determine a desirable search direction. At 

each major iteration of the SQP method, a quadratic subproblem is solved such that a 

quadratic approximation to the augmented objective function is given by (Branch and 

Grace, 1996): 

min(</e9T) 

q(d) = -drHd + cTd 

Aid = bi >i=,...,me 

Aid<bl >i = me +l,...,m 

The design variables are the components of d, and the Hessian matrix is given as H. 

Here, At refers to the i* row of the m-by-n matrix A. 

The procedure for obtaining the solution for the next search direction consists of 

two phases. The first phase consists of the calculation of the next feasible point along the 

given search direction. The second phase then involves the generation of an iterative 

sequence of feasible points that converge to the solution. Estimates of the active 

constraints that are on the constraint boundaries at the solution point are contained in the 

active set, Ak. The subscript k is the value of the number of performed iterations. At 

  A 

each iteration, Ak is updated and used for the basis of the next new search direction, dk. 

A 

The variable, dk, is used here as a quadratic subproblem search direction variable. It 

does not represent the search direction, dk, which is related to the search direction of the 

A 

major iterations of the SQP method. The new quadratic subproblem search direction, dk, 
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is calculated and minimizes the objective function. The search direction remains on the 

active constraint boundaries. After calculation of the new search direction, a step is taken 

of the form: 

xk+1=xk+r\dk. 

There are only two choices at each iteration for the step length, n, due to the quadratic 

nature of the objective function. If n=l, an exact step is taken to the minimum of the 

objective function that is restricted by the null space Ak. When an exact step as this is 

taken, then this is the solution to the quadratic subproblem. If a step of unity cannot be 

taken, the step along dk is less than unity and is to the nearest constraint. A new 

constraint is included in the active set for the next iteration. 

Lagrange multipliers, Ak, are calculated when n independent constraints are 

included in the active set, without locating a minimum. The Lagrange multipliers are 

calculated so that they satisfy the nonsingular set of linear equations 

A[Xk=c. 

If all elements of Ak are positive, xk is the optimal solution to the quadratic subproblem. 

If any component of the Lagrange multipliers is negative, and does not correspond to an 

equality constraint, then the corresponding element is deleted from the active set and a 

new iterate is sought (Branch and Grace, 1996). 
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b.        Line Search and Merit Function Calculation 

After determining the new search direction dk, the design is updated using 

a one-dimensional search problem that is used to form the new iterate: 

xk+l=xk+nkdk. 

The step length parameter, %, for the search direction is calculated to sufficiently 

decrease the value of the merit function. The merit function used in this implementation 

is given as (Branch and Grace, 1996): 

r», m 

¥(x) = /(x) + £r, -gi(x)+ £r, -maX{0,g;(x)}. 

The recommended setting for the penalty parameter is (Powell, 1983): 

r, =fa+i), =maxk/,-((rA), +X.,) 

/ = !,...,ft! 

The initial penalty parameter in this implementation is set to: 

_ |y/xx)[ 

where II- • \\ is the Euchdean norm. 
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This ensures larger contributions to the penalty parameter from constraints with smaller 

gradients, which would be the case for active constraints at the solution point (Branch 

and Grace, 1996). 

c. Updating the Hessian Matrix 

The search direction has been determined and the one-dimensional search 

to update the design has been performed, at this point. Now, it is necessary to update the 

Hessian matrix of the Lagrangian function, H, in order to provide an improved quadratic 

approximation to the augmented objective design. Powell (1977) recommends the 

Broydon-Fletcher-Shanno-Goldfarb (BFGS) method where A,(i=l,...,m) is an estimate 

of the Lagrange multipliers.    The Hessian update (BFGS) is given as: 

k+\ — nk ■+■    T           T 

qksk    skHksk 

where 
Sk = Xx+l ~ Xk 

It is recommend by Powell (1977) to keep the Hessian positive definite even though it 

may be positive indefinite at the solution point. Branch and Grace (1996) propose that a 

positive definite Hessian is maintained providing qT
ksk is positive at each update and that 

His initialized with a positive definite matrix. They proceed to state that when qT
ksk is 

not positive, qk is modified on an element-by-element basis so that q\sk >0. 
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Vanderplaats (1999) proposes a flowchart outlining the algorithm for this method as 

shown in Figure 4.1. The flowchart has been modified to accurately reflect the specific 

methodology and terminology described in Matlab 's Optimization Toolbox. 

Start 

Choose X° 

k=0 

x=x° 

H=I 

k=k+l 

Solve direction-finding quadratic 
subproblem for «^ 

I 

Perform one-dimensional search to 
minimize merit function (*P) as an 

unconstrained function 

X^X+nd,, 

Figure 4.1 Algorithm for Matlab's Sequential Quadratic Programming (SQP) 
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2. Optimization Arguments for Use in 'CONSTR' 

The inputs into the arguments of the function 'constr' are provided here in order 

to describe the optimization parameters used in finding the optimal values for the chosen 

hydrodynamic coefficients. By giving values for these arguments, a good description can 

be given for the limitations and options that were used to decide the values for the 

resulting optimum coefficients. A description of all pertinent function arguments is also 

listed here in order to describe all governing optimization parameters. 

a. Function String 

x=constr( final') The function 'final' is the function string that contains 

the name of the function that computes the objective function to be minimized at the 

point x. The function final' returns the scalar valued function to be minimized. A listing 

the Matlab function final.m' is given in Appendix A. 

b. xO 

x=constr(final \x0) The xO vector contains the starting values for scalar 

multiplication of the hydrodynamic coefficients for optimization. The starting vector for 

this optimization scheme is the 5x1 unity vector, [1111 1]. This vector is multiplied by 

the original starting values of the hydrodynamic coefficients that were previously listed 

above. Having the starting values equal to unity ensures that the optimization algorithm 

begins with the values that were taken from the original model-based observer design. 

Obviously, deviation from these initial values demonstrates improved reduction in 
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residual generation of the model. It was also found that the use of any other starting 

vector did not result in improved optimization results. 

c        Options 

x=constr("final\xO,options) The options vector controls the parameters of 

the optimization algorithm. The options used in this optimization were options (1), (2), 

and (3). Option (1) produces a tabular display of intermediate results that include the 

function value, the number of function calls, and the status of the Hessian matrix. Option 

(2) controls the accuracy of the solution at x. Option (3) controls the accuracy of the 

objective function at the solution of/ Both options (2) and (3) were set at an accuracy 

level of 0.01. Any further increase in accuracy did not provide results of greater 

significance, but only prolonged the lengthy time needed to run the optimization. 

d.        VLB and VUB 

x=constr('final\xO,options,vlb,vub) The vectors vlb and vub control the 

lower and upper bounds of the variation of the hydrodynamic coefficients. These vectors 

contained bounding scalar multipliers of the original coefficient values. As was the case 

for xO, these vectors were multiplied by the original coefficient values in order to obtain 

variation in the hydrodynamic coefficients. The values for the coefficients were allowed 

to be optimized over a range to +/- 10X their original values. 
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As an example from the Matlab code 'finalm', the lowest value for the 

coefficient of hydrodynamic sway force induced by sideslip, Yv, is obtained by 

multiplying the original coefficient value by the first value of the vector vlb: 

Yvl=vIb(l)*(-7.406e-03). 

With an allowable +/- 10X variation from the original coefficient value, the range of 

optimization for Yv is from -0.07406 to 0.07406. Limitations on the physical feasibility 

of this range of values is not of significant concern, as the final values found through 

optimization often did not exceed 4X the value of the original hydrodynamic coefficient. 

c SSandES 

x=constr('final',xO,options,vlb,vub,[],ss,es) The scalar values es and ss 

are arguments passed to the optimization function 'final' and contain the respective 

starting and ending values of the data set interval over which optimization will be 

calculated. The values of es and ss were changed according to the maneuvering specific 

data interval over which it was desired to find optimized hydrodynamic coefficients. 

3.        Scalar Reduction by Use of a Weighting Matrix 

Since the actual residual error of the model-based observer is a (3x1) vector of 

residuals, it is necessary to scale the residual error vector in order to provide a scalar 

result of the objective function for use by the optimization function 'constr'. The residual 

error vector consists of the state observation errors for sideslip (v), yaw rate (r), and 
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heading (y/). The residual error vector and the units pertaining to each residual state are 

defined as: 

Residuals = [v] 
(3x1) 

" v(ft/s) ' 
rr(rad/s) 

y/(rad) 

A weighting matrix, P, was multiplied by the residual error vector in a manner to return a 

(lxl) scalar value that accurately weighted the combination of all three state observation 

residuals. In order to accomplish this task, the following equation was implemented into 

the optimization code to provide an updated objective function for optimization: 

funmin = [v']* 
<lx!) (1x3) 

Pi 0 0 

0 p2 
0 

0 0 p3_ 

*[v] 
(3x1) 

0x3) 

The appropriate weighting values for scaling the residual error vector were chosen by 

attempting to non-dimensionalize the units pertaining to each residual. Analysis of the 

updated objective function for optimization gave insight into the values to choose for 

each weighting matrix coefficients. 
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The updated objective function can be written as follows: 

funmin = v2 * P, + rr2 * P2 + y/2 * P3 

where 

P2*\jrad/sfY 

4radf}' 

Using the vehicle length of 20 feet as a magnitude parameter for the sideslip velocity, and 

noting that conversion between ft/s and rad/s cannot be accomplished numerically, values 

for the weighting matrix were chosen with the assistance of multiple executions of the 

optimization code. The resultant weighting matrix used for optimization of the 

hydrodynamic coefficients is given as: 

P = 

01 0 0" 

0 1 0 

0 0 1 
(3x3) 

4.        Use of a Performance Index to Increase Fault Detection 

In order to adequately detect a fault in the steering subsystem, it was shown that 

the residuals generated during vehicle maneuvering had to be reduced to allow the 

residuals generated by the actual fault to be 'observed'. An inherent problem in residual 

reduction comes from the possibility of nullifying the maneuvering generated residuals to 

a degree where even residuals generated from faults would be below detection thresholds. 
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This case of residual reduction 'overkill' was corrected by the implementation of a 

'Performance Index' into the hydrodynamic coefficient optimization code. The chosen 

performance index amplified the residuals generated from a fault condition while 

reducing the fault-free residuals generated from vehicle maneuvering. In theory, the use 

of the performance index would allow for adequate fault detection during vehicle 

maneuvers. The performance index is defined as: 

/ = errorjiofault + 
error Jault 

As can be seen from the algebra of the performance index, the minimization of the no- 

fault residuals reduces maneuvering residuals. Conversely, the subsequent minimization 

of the objective function results in an increase in the value of the fault residuals. The 

trade-off between increasing the fault generated residuals and decreasing the fault-free 

generated residuals will theoretically provide the model-based observer design with the 

means to detect a fault. 

The fault generated residuals were the result of a full-stroke fin failure as 

previously described in Chapter III. The fault-free generated residuals were resultant 

from the previously described maneuvering specific data intervals of Chapter III. 

5.        Root Mean Squared Error Analysis of Generated Residuals 

In order to quantitatively compare the residual generation of the original model- 

based observer design with the residual generation of the optimized design, the root mean 

squared value of the scalar performance index over a given data interval was compared 
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between the two designs. The root mean squared value is defined as the squared 

summation of the scalar performance index divided by the number of data points within 

the evaluated data interval. This can be shown numerically as: 

2 1/ 
RMS = 

(es - ss) 

Since both optimized and original designs will incorporate residual scaling by use of the 

weighting matrix, P, the utilization of the root mean squared method will allow equal 

comparisons of the two designs with respect to magnitude of residual generation. Also, 

the use of the scaled performance index value alleviates the need for individual 

comparison of each of the three state residuals. 

C.       RESULTS OF HYDRODYNAMIC COEFFICIENT OPTIMIZATION 

1. Tabular Results of Hydrodynamic Coefficient Optimization 

Innumerable optimization runs were conducted over all data set intervals in order 

to obtain the best optimized hydrodynamic coefficients for the model-based observer 

design. Only the final results will be listed here. If further manipulation of any of the 

defining parameters of optimization is desired, the Matlab code written for these 

calculations and their subsequent optimized results is contained in Appendix A. 

The final optimized hydrodynamic coefficients and their respective performance 

improvements to residual generation are first listed in tabular form for numerical 
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comparison purposes. Graphical representation of the optimized coefficients 

performance will be included later in this chapter. 

a.        Optimized Hydrodynamic Values for Each Data Set Interval 

Optimization of the hydrodynamic coefficients over each data set interval 

was conducted using the 21UUY sensor data. Each data set interval had its own distinct 

set of coefficient values that were found to optimally minimize the scaled performance 

value,/, pertaining to that data interval's residual generation characteristics. As 

previously mentioned, the scalar multipliers for each coefficient were allowed to be 

optimized over a range from -10 to +10. The initial starting values for each coefficient 

were the values of the coefficients from the original model-based observer design. Table 

4.1 lists the final optimized 'scalar multipliers' of each hydrodynamic coefficient for each 

data set interval. 

Data Set Y Yr Nv Nr a 
(Y5 & Ns) 

4800-5800 -0.0339 3.9459 -0.2479 -1.3745 1.5478 

7500-8750 1.3507 0.5918 -0.7773 -3.1481 3.0880 

9250-10250 -0.0460 3.9509 -0.4077 -1.3938 0.5505 

10750- 
11500 

0.2156 2.5048 0.0247 -0.6599 2.3958 

18500- 
20500 

3.9994 3.8151 -10.000 -1.4565 0.2213 

i 

Table 4.1 Optimized Scalar Multipliers for Each Hydrodynamic Coefficient 

Notes for Table 4.1:   Source Code Name - "side_perf_sets.m" 
Function File Name - "final_perf.m" 
x0=[l 1111], vlb=[-10 -10 -10 -10 -10], vub=[10 10 10 10 10] 
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b.        Performance Characteristics of Optimized Coefficients 

The resulting performance of each optimized coefficient set is given in 

Table 4.2. The performance values for the coefficients from the original model-based 

observer design are included in order to gauge the improvement in model performance by 

optimization of the hydrodynamic coefficients. Also included in Table 4.2 is the number 

of function calls necessary to reach optimal values for the coefficients. This information 

would become of importance in future work incorporating on-board, adaptive 

optimization as a means to improve vehicle performance. The larger the value of the 

function call, the longer the CPU time necessary to calculate residuals. The Root Mean 

Squared (RMS) data that is included in this table was calculated over the entire data set 

from data =4000:21900. This calculation gives insight into the actual performance of 

each hydrodynamic coefficient set as if it were to be used continuously over all 

maneuvering situations. This valuable insight will allow direct comparisons between the 

different coefficient sets for best performance in residual generation during maneuvering. 

Data Set Original 
/•value 

Optimized 
/■value 

Orig.RMS 
(All data) 

Opt. RMS 
(All data) 

% 

ARMS 
#Fun. 
Calls 

4800- 
5800 

557.088 2.531 0.0193 0.0057 70.47% 
(1) 

209 

7500- 
8750 

139.204 25.010 0.0193 0.0119 38.34% 
(i) 

125 

9250- 
10250 

13998.5 2047.6 0.0193 0.0056 70.98% 
(1) 

119 

10750- 
11500 

13.642 0.5197 0.0193 0.0096 50.25% 
Ü) 

284 

18500- 
20500 

1656420 204593 0.0193 0.0354 83.41% 
(T) 

168 

Table 4.2 Performance Characteristics of Optimized Coefficients 

Notes for Table 4.2:   Source Code Name - "sidejperf_sets.m" and "RMS_obs.m': 

Data Interval for RMS Calculations - 10000 to 21900 
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2.        Graphical Results of Hydrodynamic Coefficient Optimization 

Although numerical comparisons between the performance characteristics of each 

optimized coefficient set is significant, actual graphical analysis of the residual reduction 

of the optimized coefficient sets is necessary in order to fully grasp the benefits of 

attempting to decrease the difference in the measured and estimated dynamic and control 

matrixes of the model-based observer design. By evaluating the numerical performance 

characteristics of the hydrodynamic coefficients, the initial starting point for analyzing 

the graphical nature of residual reduction by optimization can be found. Coefficient data 

set THREE (Data: 9250-10250) produced the best results for residual reduction over the 

entire data interval. The percentage decrease in RMS residual value over the entire data 

set was slightly greater than the decrease resulting from coefficient data set ONE. 

Although coefficient data set THREE did not result in the largest percentage decrease in 

scalar performance value,/, over its respective data set, it did produce the greatest 

decrease in residual generation over the entire data run when compared to the other four 

coefficient sets. With this in mind, Figures 4.2 through 4.6 are included here in order to 

give a representation of the actual residual reduction that occurs when optimization of the 

hydrodynamic coefficients takes place. Only one characteristic state residual will be 

shown for each of the five coefficient sets. Figures 4.7 and 4.8 are included to provide 

graphical analysis of residual generation over a large data interval (Data: 10000-20000) 

using the both coefficient data sets THREE and ONE, due to their superior residual 

reduction performance. 

Residual reduction over maneuvering specific data intervals can be accomplished 

by optimizing the hydrodynamic coefficients that constitute the dynamic and control 
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matrixes of the model-based observer design. By optimizing the hydrodynamic 

coefficients of these matrixes, a better model is formed that more accurately reflects the 

values of the measurement dynamic and control matrixes. The estimated control and 

input matrixes can utilize the newly optimized hydrodynamic coefficients in order to 

reduce the difference between the measured and estimated state values that produce 

residuals. 

-0.05 

Original vs. Optimized Heading Residuals (Data:4800-5800) 

"480 490 500 510 520 530 540 
Time (sec) 

550 560 570 580 

Figure 4.2 Residual Reduction by Hydrodynamic Coefficient Optimization 
(Data Interval: 4800-5800) 

Notes for Figure 4.2: Source Code Name - "opt_res_reduc.m" 
Scalar Coeffs. Used - [-0.0339 3.946 -0.248 -1.375 1.548] 
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Original vs. Optimized Sideslip Residuals (Data:7500-8750) 

760 780 800 820 
Time (sec) 

840 860 

Figure 4.3 Residual Reduction by Hydrodynamic Coefficient Optimization 
(Data Interval: 7500-8750) 

Notes for Figure 4.3: Source Code Name - "opt_res_reduc.m" 
Scalar Coeffs. Used- [1.351 0.5918 -0.777 -3.148 3.088] 
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1.5 
Original vs. Optimized Heading Residuals (Data:9250-10250) 
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Time (sec) 

Figure 4.4 Residual Reduction by Hydrodynamic Coefficient Optimization 
(Data Interval: 9250-10250) 

Notes for Figure 4.4: Source Code Name - "optresj-educ.m" 
Scalar Coeffs. Used - [-0.046 3.951 -0.408 -1.394 0.551] 
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Original vs. Optimized Yaw Rate Residuals (Data:10750-11500) 

-0.12 

Original Residuals 
Optimized Residuals 

1080 1090 1100 1110 1120 
Time (sec) 

1130 1140 1150 

Figure 4.5 Residual Reduction by Hydrodynamic Coefficient Optimization 
(Data Interval: 10750-11500) 

Notes for Figure 4.5: Source Code Name - "optresreduc.m" 
Scalar Coeffs. Used - [0.216 2.505 0.0247 -0.660 2.396] 
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Original vs. Optimized Heading Residuals (Data:18500-20500) 
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Figure 4.6 Residual Reduction by Hydrodynamic Coefficient Optimization 
(Data Interval: 18500-20500) 

Notes for Figure 4.6: Source Code Name - "opt_res_reduc.m" 
Scalar Coeffs. Used - [3.999 3.815 -10.00 -1.457 0.221] 
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Original vs. Optimized Heading Residuals (Coeff. Set THREE) 
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Figure 4.7 Coefficient Set THREE Performance Over Extended Interval 
Data: 4000-10000, Heading Residual Response 

Notes for Figure 4.7: Source Code Name - "opt_res_reduc.m" 
Scalar Coeffs. Used - [-0.046 3.951 -0.408 -1.394 0.551] 
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Original vs. Optimized Heading Residuals (Coeff. Set ONE) 
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Figure 4.8 Coefficient Set ONE Performance Over Extended Interval 
Data: 4000-10000, Heading Residual Response 

Notes for Figure 4.8: Source Code Name - "opt_res_reduc.m" 
Scalar Coeffs. Used - [-0.0339 3.946 -0.248 -1.375 1.548] 
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Figures 4.2 through 4.7 display excellent residual reduction characteristics for the 

five coefficient sets. Although residual reduction is very important in detecting faults 

during maneuvering, it is still vital to be able to 'see' the fault-induced residuals through 

the reduced maneuvering residuals. 

D.       MANUAL FAULT INTRODUCTION AND DETECTION 

As previously accomplished in Chapter III, a manual full-stroke fin fault was 

introduced into the newly optimized model-based observer design. The optimized 

hydrodynamic coefficients from data set THREE were used in the improved observer 

design due to their residual reduction characteristics as shown in Table 4.2 and Figures 

4.4 and 4.7. In order for the model-based observer design to accurately detect faults, the 

model-based observer must adequately amplify the residuals due to the implemented fault 

to a degree where threshold tolerance levels would be exceeded. The fault scenarios 

from Chapter III are again used here for analysis and they are listed again for 

familiarization: 

Data Set: 5200:5800 - Fault occurs during the maneuver and remains 
constant beyond maneuver completion. (Figure 4.9) 

Data Set: 7500:8750 - Fault occurs before the maneuver and remains 
constant beyond maneuver completion. (Figure 4.10) 

Data Set: 9250:10250 - Fault occurs during the maneuver and is corrected 
prior to maneuver completion. (Figure 4.11) 

Data Set: 10750:11500 - Fault occurs before the maneuver and is 
corrected prior to maneuver completion. (Figure 4.12) 

Data Set: 18500:20500 - Fault occurs during the maneuver and is 
corrected prior to maneuver completion. (Figure 4.13) 
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Figures 4.9 through 4.13 display the model-based observer results when a fault is 

manually introduced into the steering subsystem. Graphical analysis of these figures 

shows that there is a considerable increase in the clarity between the fault-free residuals 

and the fault residuals by using the optimized observer design over the original design. 

Optimization of the hydrodynamic coefficients provided a better estimate of the 

coefficient values that constitute the estimated dynamic and control matrixes. The 

model-based observer design was significantly improved by utilizing optimization, but 

reliable and robust fault detection is still questionable due to the irregularities in the 

optimally generated fault-free residuals. It would be a difficult task to develop a fault 

detection algorithm that could reliably detect a fault as shown in Figures 4.9 through 

4.13. The lack of a constant baseline residual value to use for fault residual comparison 

makes fault detection difficult even with the use of the optimized model-based observer 

design. 
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OPT OBS RESP TO FAULT "Heading" (Data:4800-5800) 

480 490 500 510 520 530 540 550 560 570 580 
Time (sec) 

Figure 4.9 Optimized Observer Design Response to Fin Fault "Sideslip': 

(Data Interval: 4800-5800) 

Notes for Figure 4.9: Source Code Name - "optfaults.m" 
Scalar Coeffs. Used - [-0.046 3.951 -0.408 -1.394 0.551] 

85 



OPTIMIZED OBSERVER RESPONSE TO FAULT "Yaw Rate" (Data:7500-8750) 

760 780 800 820 
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840 860 

Figure 4.10 Optimized Observer Design Response to Fin Fault "Yaw Rate' 
(Data Interval: 7500-8750) 

Notes for Figure 4.10: Source Code Name - "opt_faults.m" 
Scalar Coeffs. Used - [-0.046 3.951 -0.408 -1.394 0.551] 
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0.015 
OPTIMIZED OBSERVER RESPONSE TO FAULT "Heading" (Data:9250-10250) 
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Figure 4.11 Optimized Observer Design Response to Fin Fault "Heading" 
(Data Interval: 9250-10250) 

Notes for Figure 4.11: Source Code Name - "opt faults.m" 
Scalar Coeffs. Used - [-0.046 3.951 -0.408 -1.394 0.551] 
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OPTIMIZED OBSERVER RESPONSE TO FAULT "Yaw Rate" (Data:10750-11500) 
0.0251 1 ——i 1 1 1 ! r 

1070 1080 1090 1100 1110 1120 
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1130 1140 1150 

Figure 4.12 Optimized Observer Design Response to Fin Fault "Yaw Rater 

(Data Interval: 10750-11500) 

Notes for Figure 4.12: Source Code Name - "opt_faults.m" 
Scalar Coeffs. Used - [-0.046 3.951 -0.408 -1.394 0.551] 
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OPTIMIZED OBSERVER RESPONSE TO FAULT "Heading" (Data: 18500-20500) 
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Figure 4.13 Optimized Observer Design Response to Fin Fault "Heading' 
(Data Interval: 18500-20500) 

Notes for Figure 4.13: Source Code Name - "optfaults.m" 
Scalar Coeffs. Used - [-0.046 3.951 -0.408 -1.394 0.551] 
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E.        CONCLUSIONS 

This chapter provided many insights into the use of a model-based observer for fault 

detection during vehicle maneuvers. By implementing real 21UUV sensor data into the 

original model-based observer as designed by Melvin (1998), it was shown that this 

design produced large magnitude residuals throughout the length of the vehicle's run. 

More importantly, the residuals produced by this observer design during vehicle 

maneuvers were extremely large and irregular in periodicity. It was also shown that 

manually introduced full-stroke fin faults were not detectable throughout the five data set 

intervals that were previously analyzed in Chapter II. Failure to detect these faults led to 

the investigation into the inaccuracies between the measured and estimated dynamic (A) 

and control (B) matrixes of the steering subsystem model that are largely responsible for 

residual generation. 

It was proposed that certain hydrodynamic coefficients that constitute the 

estimated A and B matrixes of the steering subsystem model contained inaccuracies that 

led to the increase in residual generation during vehicle maneuvering. The inaccuracies 

in these matrixes resulted in improper modeling of the vehicle's steering subsystem as the 

vehicle maneuvered through large angles of heading throughout its run. Optimization of 

five chosen hydrodynamic coefficients resulted in significant residual reduction during 

vehicle maneuvers. Residual reductions of up to 71% were achieved over the length of 

the entire data set. Substituting the optimized hydrodynamic coefficients into the original 

model-based observer design proved that significant numerical and graphical 

improvements in residual reduction were attainable by attempting to accurately model the 

A and B matrixes of the steering subsystem model by use of optimization. 
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Upon implementation of a fall-stroke fin fault into the steering subsystem, it was 

shown that the optimized model-based observer design had an improved capability to 

detect faults during maneuvering data intervals. Although the clarity and recognition of 

the actual faults increased by use of optimization, the reliability to detect the faults in a 

timely manner was suspect due to the lack of constant baseline residuals generated during 

fault-free time intervals. Without the ability to accurately compare fault-free residuals to 

fault-induced residuals, detection of a fall-stroke fin fault is unattainable with the current 

model-based observer design. This is due to the inability to set fault threshold levels 

based upon constant residual values generated over the time of a vehicle maneuver. 

It is proposed that the reason for limitations in the original model-based observer 

design to reliably detect faults due to inconsistent baseline residual values is twofold: 

• The model-based observer design is based upon a linear model assumption. With 

the large angles of heading experienced by the vehicle throughout the length of its 

data run, the linear model breaks down because of the model calculations based 

upon assumption of small angles of incidence. Without the inclusion of large 

angles into the model design, the existing system model is flawed and incapable 

of accurately estimated state values that accurately define the model. 

• The gain matrix that is calculated for the observer model is based upon a nominal 

model, where variances in the noise and measurement matrixes are neglected. 

Due to this nominal assumption, the gain matrix calculated upon nominal values 

is inherently flawed and does not satisfactorily represent the actual measurement 

model during maneuvering. 
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Solutions to these two reasons for the limiting performance of the model-based 

observer design must be found in order for reliable and robust fault detection to take 

place during vehicle maneuvers. 
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V.       UTILIZATION OF THE EXTENDED KALMAN FILTER FOR 
FAULT DETECTION 

It was shown in previous chapters that robust and reliable fault detection in the 

steering subsystem of 21UUV was not entirely attainable using prior linear designs and 

model-based observer techniques. Optimization of certain hydrodynamic coefficients 

that constitute the dynamic and control matrixes of the system model significantly 

reduced residual generation from model uncertainty but not to a degree where fault 

residuals could be detected with 100% certainty due to insuppressible residuals that 

continued be generated by the model. Investigation into the remaining uncertainties of 

the steering model design leads to the inevitable conclusion that the nominalizations of 

the system and measurement errors present in the model add to the generation of 

residuals. A technique perfectly tailored to the problem of filtering out these errors is the 

optimal linear estimator, the Kaiman filter. By implementation of an often-used Kaiman 

filter algorithm, it will be shown that the model-based observer design may be improved 

further, and to a degree where reliable and robust fault detection in the steering 

subsystem of the 21UUV is attainable. 

A.       BASIC INTRODUCTION TO KALMAN FILTERING 

A Kaiman filter is a data processing algorithm that optimally and recursively 

updates the values of state variables given input measurements corrupted by noise and a 

model with uncertainty. The state variables that define the steering subsystem of 21UUV 

cannot be measured directly, but must be calculated based upon sensor measurement data 

taken by the vehicle. There exists an amount of uncertainty between the calculated states 
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and the actual measured states that is identified as modeling inaccuracies and is defined 

as system noise, or system error. Also, measurements taken by the vehicle are degraded 

by the presence of noise, biases, and instrument inaccuracies. These measurement 

uncertainties are denned as measurement noise, or measurement error. Maybeck (1996) 

describes the abilities of the Kaiman filter to combine all available measurement data 

with knowledge of system and measurement devices, to produce an estimation of desired 

variables in such a manner as to statistically rmnimize error. 

Figure 5.1 was adapted from Maybeck (1996) and depicts the basic architecture 

in which Kaiman filtering would be used to improve steering subsystem performance by 

minimizing errors in the system. The steering subsystem is being driven by the inputs fed 

to it by the steering controller, while measuring devices provide actual state variable data 

taken from the vehicle. Knowledge of the system inputs, measurements, and respective 

noise is utilized to provide optimal estimates of the system, as shown. 

A Kaiman filter utilizes all available information that can be provided to it in 

order to produce the best possible, or optimal, estimate available. The Kaiman filter uses 

three types of information to process available measurements to estimate desired state 

variables. These three types of information are (Maybeck, 1996): 

• Knowledge of the measurement devices and system dynamics 

• Information concerning initial conditions of variables of interest 

• Statistical description of system noises, measurement errors, and uncertainty 

in the system model. 

The recursive nature of the Kaiman filter means that the filter does not require 

storage and processing of large amounts of previous data. This aspect of the Kaiman 
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filter prevents excessive requirements for CPU calculation time. Maybeck (1996) defines 

'filter' as actually being a 'data processing algorithm'. Essentially, the filter is just a 

computer program used in the CPU that incorporates discrete-time measurement data 

rather than continuous time data. 

Steering 
Controls 

System Error 
Sources 

E, 
Steering 

Subsystem 

System States 
(v, r, y/) 

Sensor 
Measurement 

Devices 

I 
Measurement 
Error Sources 

Optimal State 
Estimates 

Observerd 
Measurements 

Figure 5.1 Steering Subsystem Kaiman Filter Architecture 
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The Kaiman filter algorithm used in this work was adapted from Gelb (1974) and 

can be viewed in any of the referenced code that was written to generate the graphs 

shown in the remainder of this chapter. If further information or study into Kaiman 

filtering concepts is desired, the reader is strongly encouraged to seek out the paper 

written by Maybeck (1996). 

B.       ANALYSIS OF BASIC KALMAN FILTER FAULT DETECTION 

A very important feature of the Kaiman filtering technique is the Kaiman 

calculation of a normalized relative error. This normalized relative error provides a 

correctly squared, scaled, and weighted measure of error calculated over a given data 

interval by use of the combination of all three state variable residual values. Normalized 

error (NE) is given as: 

NE = v'Sv, 

S = \CPC+RV, 
P = E{xx'} => Error Covariance Matrix 

P1 is related to the Information Matrix and is high when the estimation error is low 

(FIM, Bar Shalom). Essentially, it is an accurate representation of the scaled weighting 

equation formulated in Chapter IV, but with no uncertainty in dimensional equivalency. 

This normalized relative error value becomes a very powerful tool for residual generation 

and fault detection for the model-based observer design. Observer performance may be 

singularly evaluated by evaluation of the normalized relative error, without much need to 

view independent state residual values. The evaluation of the normalized relative error 
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relied upon heavily in this work, but subsequent evaluation of individual state residuals 

will also be included. 

An initial graphical study of the residual reduction characteristics of the Kaiman 

filter shows significant reduction in residual values over all data set intervals. Figures 5.2 

through 5.5 display the residual reduction performance of implementing a basic Kaiman 

filter into the original model-based observer design. 
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Figure 5.2 Basic Kaiman Filter Sideslip Residual Generation (Data: 4800-5800) 

Note on Figure 5.2: Source Code Name - "resjest.m", All Original Values Used 
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Basic Kaiman Riter Yaw Rate Residual (Data: 4800-5800) 

Figure 5.3 Basic Kaiman Filter Yaw Rate Residual Generation (Data: 4800-5800) 

Note on Figure 5.3: Source Code Name - "resjest.m", AU Original Values Used 

Basic Kaiman Filter Heading Residual (Data: 4800-5800) 

Figure 5.4 Basic Kaiman Filter Heading Residual Generation (Data: 4800-5800) 

Note on Figure 5.4: Source Code Name - "resjest.m", All Original Values Used 
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Basic Kaiman Filter Normalized Error (Data: 4800-5800) 
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Figure 5.5 Basic Kaiman Filter Relative Error Values (Data: 4800-5800) 

Note on Figure 5.5: Source Code Name - "restest.m", All Original Values Used 

The data evaluated in these figures was from data set interval ONE, without fault 

introduction into the steering subsystem. Although significant residual magnitude was 

reduced over this maneuvering data interval, there still exist significant fluctuations in the 

residuals in comparison to a zero baseline reference value. The normalized relative error 

over the data interval is small, but fluctuations in its magnitude may prevent proper fault 

detection. 

In order to actually gauge the fault detection performance of the basic Kaiman 

filter, a full-stroke fin fault was introduced over data set interval ONE. As performed 

previously, the fault was introduced at the beginning of the data set and remained 'on' 

until the end of the data set. The resultant performance of the basic Kaiman filter is 

shown in Figures 5.6 through 5.9. Unfortunately, the basic Kaiman filter was not capable 
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of improving the detection possibility of a full-stroke fin fault by residual generation 

analysis over the maneuvering interval. Although detection of a fault by residual analysis 

is not reliably possible using this Kaiman filter, partial fault detection is capable by 

analyzing the relative error produced due to the fin fault. Figure 5.9 shows the relative 

error of the steering subsystem due to a fin fault and the distinction between the fault-free 

residual and the fault residual is prominent. Designating the basic Kaiman filter as the 

answer to fault detection challenges at this point would be premature because continued 

analysis of the relative error plot reveals that between time 550 and 580 seconds, the 

normalized relative error of the fault falls below the fault-free relative error. This 

situation is an example of a 'false fault-detect'. Clearly, as evaluated in the previous 

eight figures, the Kaiman filtering technique must be improved if it is to be proved a 

reliable technique for detecting faults in the steering subsystem of the 21 UUV. 

Basic KSkran Filter Sideslip fault Response (Data: 4800-5800) 

No-Fault Residual 
Fault Residual 
Zero Baseline 

"480   490   500   510   520   530   540   550   560   570   580 
Time (sec) 

Figure 5.6 Basic Kaiman Filter Sideslip Residual Fault Detection (Data: 4800-5800) 

Note on Figure 5.6: Source Code Name - "res_test_both.m", All Original Values Used 
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Basic Kaiman Fi»er Yaw Rate Fault Response (Data: 4800-5800) 
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Figure 5.7 Basic Kaiman Filter Yaw Rate Residual Fault Detection (Data: 4800-5800) 

Note on Figure 5.7: Source Code Name - "resJest_both.m", All Original Values Used 

Basic Kaiman Filter Heading Fau» Response (Data: 4800-5800) 

No-Fault Residual 
Fault Residual 
Zero Baseline 

Figure 5.8 Basic Kaiman Filter Heading Residual Fault Detection (Data: 4800-5800) 

Note on Figure 5.8: Source Code Name - "res_testjx>th.m", All Original Values Used 
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Basic Kaiman Filter Normalized Error Fault Response (Data: 4800-5800) 

Figure 5.9 Basic Kaiman Filter Relative Error Fault Detection (Data: 4800-5800) 

Note on Figure 5.9: Source Code Name - "resJest_both.m", All Original Values Used 

C.        ANALYSIS OF UNCERTAIN KALMAN PARAMETERS 

In an attempt to improve the Kaiman filter for use in steering subsystem fault 

detection, an analysis of the algorithm was conducted and three areas of uncertainty were 

designated in which it was believed residual generation might be effected significantly. 

These three areas of uncertainty were the: 

• System noise matrix, Q 

• Measurement noise matrix, R 

• Scalar Gain Multiplier, designated ß. 

Analysis of the system noise matrix and the measurement noise matrix revealed that their 

values were based upon nominal assumptions. The exact values of these two matrixes 

are unknown because they represent unknown noise and bias quantities inherent in the 
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system and are dependent upon operational and environmental conditions. The system 

noise matrix and the measurement noise matrix that were used in the previous evaluation 

of the basic Kaiman filter performance were, respectively: 

0.0478 0.07917   0 

Q= 0.7917 16.31     0 

0 0        0 

10 0     0 

R=   0 10    0 

0 0    10 

A scalar gain multiplier was identified as being a possible improvement to fault 

detection by aiding in amplifying the residual response due to a fault. Essentially, if the 

residuals due to maneuvering were driven to near-zero magnitude and the residuals due to 

a fault were present, a scalar gain multiplier would greatly amplify the fault residuals, but 

at the same time, be ineffective for amplifying the fault-free residuals due to their small 

magnitude. The scalar gain multiplier would be used to multiply the gain matrix, T, 

taken from the state space representation of the steering observer model. If written in 

state space form, the scalar gain multiplier, ß, would appear as: 

The matrixes <I> and T represent the discrete-time forms of the continuous-time state 

matrixes A and B, respectively. In order to improve upon the performance of the Kaiman 
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filter by attempting to find better values for Q, R, and ß, optimization of the model-based 

observer containing the Kaiman filter was performed. 

D.       OPTIMIZATION OF Q, R, AND ß 

1.        Parameters For Optimization of the Kaiman Filter 

Optimization of Q, R, and ß was accomplished by identifying the values for 

which optimization might improve the Kaiman filter's performance. Once again, the 

Matlab function 'constr' was utilized for the optimization function associated with this 

process. The final variables for optimization were chosen after innumerable executions 

of scheme combinations, in which individual analysis was conducted in order to 

determine which optimization parameter set produced the most reliable and robust fault 

detection for the steering subsystem of the 21UUV. The optimization values for the Q 

and R matrixes are scalar multipliers of the nominal Q and R values. The scalar gain 

multiplier, ß, was optimized around the nominal value of one. The final vector (alpha) 

containing all the optimization variables for Q, R, and ß is defined as: 

alpha = [alpha(l)   alpha(2)   alphaß)   alpha(4)   alpha(5)   alpha(6)   alpha(7)\ 

'alpha(l)        0 0 

R=        0 alpha(2) 0 

0 0 alpha(3)_ 

~alpha(4)*.0478   alpha(5)* .7917 0 

Q= alpha(5)* .7917   alpha(6)* 16.31 0 

0 0 0 

ß = alpha(7). 
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The range for optimization was set from 0.0001 to 20.0 for the scalar multiplier of 

each alpha component pertaining to the values of R, whereas the range for optimization 

for the remaining values of alpha was set from 0.0001 to 10.0 for the scalar multiplier of 

their nominal values. Initial starting values for the components of alpha were each unity. 

This ensured that the optimization would begin about the original values of the basic 

Kaiman filter design and without influence from the scalar gain multiplier. 

In view of the significant residual reduction characteristics obtained from using 

previously optimized hydrodynamic coefficients from the model-based observer design, 

the optimized hydrodynamic coefficients from data set interval ONE were implemented 

into the optimization of the Kaiman filter design. Since the Kaiman filter design still 

incorporates the modeling dynamics of the 21UUV, the utilization of the optimized 

hydrodynamic coefficients significantly reduced the residuals generated with the Kaiman 

filter. Data set interval ONE was chosen for inclusion into the Kaiman filter design due 

to its superior fault-free residual reduction characteristics and its superior fault residual 

amplification tendencies. 

As utilized in the optimization of hydrodynamic coefficients, a performance index 

will be the objective function for optimization. The performance index for the 

optimization of alpha is of the same design as the previous, but the Kaiman filter 

normalized relative error, with and without a fault, will constitute the index. Since the 

Kaiman filter calculates this squared, scalar relative error that takes into account the three 

state residuals, there is no reason to formulate a weighting matrix or to attempt to 

accurately non-dimensionalize the residual values. 
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The performance index that is the objective function for the optimization of alpha is 

defined as: 

1 
f = relerrjiofault + 

relerrJault 

This performance index once again amplifies the residuals generated from a fault 

condition while reducing the fault-free residuals generated from vehicle maneuvering. 

2.        Tabular and Graphical Results for Q, R, and ß Optimization 

Again, innumerable optimization runs were conducted over all data set intervals 

in order to obtain the optimized values for alpha that provided the greatest improvement 

in model design. Only the final results taken from the best alpha will be listed here. If 

further manipulation or evaluation of any of the defining parameters of optimization is 

desired, the Matlab code written for these calculations and their subsequent optimized 

results is contained in Appendix C. Also, each graph contained in this chapter includes 

the name of the code that generated the graph's respective plot. 

The final optimized components of alpha and their respective performance 

improvements to residual reduction are first listed in tabular form for numerical 

comparison purposes. Graphical representations of the performance of the optimized 

components of alpha will be included later in this chapter. 

a.        Optimized Alpha Components for Each Data Set Interval 

Optimization over each data set of the components of vector alpha was 

conducted using the 21UUV sensor and measurement data. Each data set interval had its 
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own distinct alpha component values that were found to optimally minimize the 

normalized relative error, rel, pertaining to that data interval's residual generation 

characteristics. Table 5.1 lists the final optimized scalar multipliers for the chosen values 

of the Q matrix, the R matrix, and the scalar gain multiplier ß. 

Data 
Set 

Alpha(l) 

R(l,l) 
Alpha(2) 
R(2,2) 

Alpha(3) 

R(33) 

Alpha(4) 

Q(U) 
Alpha(5) 

Q(1,2),Q(2,1) 

Alpha(6) 
Q(2,2) 

Alpha(7) 

ß 
4800- 
5800 

20.00 2.2282 1.6919 10.00 1.2232 8.1224 1.4964 

7500- 
8750 

20.00 4.7403 4.3996 10.00 0.0700 8.9135 1.6679 

9250- 
10250 

20.00 20.00 20.00 10.00 0.0001 10.00 1.3128 

10750- 
11500 

20.00 6.0862 6.4989 10.00 1.9825 5.8062 1.5968 

18500- 
20500 

20.00 20.00 20.00 10.00 2.5477 10.00 1.3552 

Table 5.1 Optimized Scalar Multipliers for Alpha 

Notes for Table 5.1: Source Code Name - "optikalmsets.m" 
Function File Name - "opti_call.m" 
x0=[l 11111 l],vlb=[.0001.0001.0001.0001.0001.0001.0001], 
vub=[20 20 20 10 10 10 10] 

b.        Performance Characteristics of Optimized Alpha 

The resulting performance of each of the optimized alpha sets is given in 

Table 5.2. An additional column in Table 5.2 contains the percent change in the 

objective function value as calculated over each respective data set interval. Due to the 

Kaiman filter's ability to calculate an accurately scaled and normalized relative error for 

the residuals, it is important to analyze the change in the optimized objective function 

since it directly relates to the optimization of the three state variables in the steering 
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model for fault detection purposes. In order to numerically gauge the performance of 

each alpha set over multiple vehicle maneuvering scenarios, the objective function was 

calculated for each alpha set over data ranging from 4000 to 21900 data points. This 

extended analysis will allow for comparisons between the alpha sets on overall model 

performance improvement. Performance values for the basic Kaiman filter were 

calculated using original model-based observer hydrodynamic coefficients and are 

included here in order to gauge the improvement in model performance by optimization 

of Q, R, and ß and inclusion of the optimized hydrodynamic coefficients from the model- 

based observer design. 

Data 
Set 

Original 
/-set 

Opti. 
/-set 

Orig/ 
extended 

Opt/ 
extended /-set 

%A 
/^extend 

#Fun 
Calls 

4800- 
5800 

2.7133 0.1796 247.664 10.932 93.4% 95.6% 
(4) 

129 

7500- 
8750 

5.2271 0.1677 247.664 7.2479 96.8% 
(1) 

97.1% 
a) 

129 

9250- 
10250 

46.800 4.3174 247.664 3.0656 90.7% 
Ü) 

98.8% 
a) 

169 

10750- 
11500 

3.3110 0.2182 247.664 6.0700 93.4% 
U) 

97.6% 
a) 

138 

18500- 
20500 
 1 

447.48 43.199 247.664 3.2057 90.3% 
Ü) 

98.7% 
a) 

217 

Table 5.2 Performance Characteristics of Optimized Alpha 

Notes for Table 5.2: Source Code Name - "RMS_test_sets.m", "f_calc.m", and 
'T_calc_orig.m" 

Data Interval for Extended/Calculations - 4000 to 21900 
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3.        Graphical Results for Q, R, and ß Optimization 

The numerical comparisons of the performance of each data set's alpha 

components is very significant, but graphical analysis of residual reduction and fault 

detection are necessary in order to judge which data set produced the best performing 

Kaiman filter design. Each data set produced fantastic reduction in objective function 

value over its respective data interval. Due to such great performance of each data set's 

optimized alpha, the normalized relative error over each data set is included here in order 

to gauge the severity of residual reduction resulting from alpha optimization. Figures 

5.10 through 5.14 display the comparison between normalized relative error with the 

basic Kaiman filter and normalized relative error with the optimized Kaiman filter. Each 

figure utilizes the specific alpha calculated by optimization of the Kaiman filter's Q, R, 

and ß respective to its data set. As can be seen from these plots, optimization of the 

system noise matrix, measurement noise matrix, and gain scalar multiplier produces 

incredible results in residual reduction. 

Figures 5.10 through 5.14 show that the normalized relative error over each data 

set is driven nearly to a magnitude of zero by optimization of the basic Kaiman filter. 

Since normalized relative error is a weighted measure of all three state residuals, it is 

apparent each data set experiences a severe reduction in maneuvering residuals after 

optimization. Evaluation of a fault implemented into the newly optimized Kaiman filter 

will define the actual performance of the new design to detect faults within the steering 

subsystem of the 21UUV. 
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Basic vs. Optimized KALMAN Relative Error (Data:4800-5800) 
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Figure 5.10 Optimized Kaiman Filter Residual Reduction (Data: 4800-5800) 

Notes for Figure 5.10: Source Code Name - "res_comp_sets.m" 
Alpha Set Used: [20 2.23 1.69 10 1.22 8.12 1.50] 

Basic vs. Optimized KALMAN Relative Error (Data:7500-8750) 

600 620 
Time (sec) 

Figure 5.11 Optimized Kaiman Filter Residual Reduction (Data: 7500-8750) 

Notes for Figure 5.11: Source Code Name - "res_comp_sets.m" 
Alpha Set Used: [20 4.74 4.40 10 0.070 8.91 1.67] 
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Basic vs. Optimized KALMAN Relative Error (Data:9250-10250) 
~I 1 I r- 
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1000 1010 

Figure 5.12 Optimized Kaiman Filter Residual Reduction (Data: 9250-10250) 

Notes for Figure 5.12: Source Code Name - "res_comp_sets.m" 
Alpha Set Used: [20 20 20 10 0.0001 10 1.31] 

Basic vs. Optimizecl KALMAN Relative Error (Data: 10750-11500) 

Figure 5.13 Optimized Kaiman Filter Residual Reduction (Data: 10750-11500) 

Notes for Figure 5.13: Source Code Name - "res_comp_sets.m" 
Alpha Set Used: [20 6.09 6.50 10 1.98 5.81 1.60] 
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Basic vs. Optimized KALMAN Relative Error (Data:18500-20500) 

2050 

Figure 5.14 Optimized Kaiman Filter Residual Reduction (Data: 18500-20500) 

Notes for Figure 5.14: Source Code Name - "res_comp_sets.m" 
Alpha Set Used: [20 20 20 10 2.55 10 1.36] 

E.        MANUAL FAULT INTRODUCTION AND DETECTION 

Due to the major residual reduction characteristics of each alpha set, it was 

necessary to evaluate fault detection performance of all alpha sets over each data set 

interval. Each alpha set reduced fault-free maneuvering residuals to the same 

approximate magnitudes for each data set interval. Since each alpha set adequately 

suppressed the residuals due to maneuvering to the same level, fault amplification 

characteristics for each alpha set were compared to decide greatest performance 

improvement of the Kaiman filter design. Alpha set FOUR was found to produce the 

greatest fault detection performance improvement of the Kaiman filter design over every 

data set interval. This decision was based upon alpha FOUR'S ability to magnify fault 

residuals to a greater degree than any other alpha set. All further evaluations of fault 
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detection performance by the Kaiman filter design will include alpha FOUR'S 

component values within the filter. 

A full-stroke fin fault was introduced into the optimized Kaiman filter design in 

order to evaluate fault detection capabilities of the new design. The 0.4 radian fault was 

introduced at the beginning of each data set interval. Each data set interval includes a 

particular maneuver by the 21UUV. Prominent and quick fault declaration must occur if 

this optimized design is to be utilized for further implementation into UUV and AUV 

technology. In order to judge if a fault is present within each data set interval, the 

normalized relative error is plotted against time. Generated relative errors without a fin 

fault are included in the plot to judge the severity of the magnitude for the fault-generated 

relative error. Finally, a constant line for the maximum fault-free normalized relative 

error in that data interval is plotted throughout the data set interval in order to compare 

how far displaced the fault relative errors are from the fault-free relative errors. This 

graphical displacement gives an indication as to how robust and reliable the new design 

will be for detecting a full-stroke fin fault in the steering subsystem. The greater the 

disparity between the fault-free error line and the fault error response, the greater the 

robustness of the fault detector. Figures 5.15 through 5.19 show the fault detection 

response of the optimized Kaiman filter using component values from alpha FOUR. 
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Optimized Kaiman Filter Fin-Fault Response (Data: 4800-5800) 

Figure 5.15 Fin Fault Detection by Optimized Kaiman Design (Data: 4800-5800) 

Note for Figure 5.15: Source Code Name - "kalm_faults.m" 
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Optimized Kaiman Filter Fin-Fault Response (Data: 7500-8750) 
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Figure 5.16 Fin Fault Detection by Optimized Kaiman Design (Data: 7500-8750) 

Note for Figure 5.16: Source Code Name - "kalm faults.m" 
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Optimized Kaiman Filter Fin-Fault Response (Data: 9250-10250) 
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Figure 5.17 Fin Fault Detection by Optimized Kaiman Design (Data: 9250-10250) 

Note for Figure 5.17: Source Code Name - "kalm_faults.m" 
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Optimized Kaiman Filter Fin-Fault Response (Data: 10750-11500) 
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Figure 5.18 Fin Fault Detection by Optimized Kaiman Design (Data: 10750-11500) 

Note for Figure 5.18: Source Code Name - "kalmfaults.m" 
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Figure 5.19 Fin Fault Detection by Optimized Kaiman Design (Data: 18500-20500) 

Note for Figure 5.19: Source Code Name - "kalm_faults.m" 
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Figures 5.15 through 5.19 display five plots that accurately and easily depict a 0.4-radian 

fin fault by use of an optimized Kaiman filter. Each data interval contained a clearly 

detectable and resolute full-stroke fin fault. The enormous disparity between the 

maximum fault-free normalized error and the fault-normalized error provides a large 

degree of robustness for the detection of a full-stroke fin fault. By optimizing the Q, R, 

and ß of the Kaiman filter and by utilizing the previously optimized hydrodynamic 

coefficients of the model-based observer, the 21UUV's maneuvering error was 

suppressed to near zero values. Although the error due to maneuvering was driven 

towards zero, the optimization about the performance index of the Kaiman filter resulted 

in design amplification of a system fault. The final values for Q, R, and ß that have 

provided a useable fault detection algorithm are: 

R = 

Q = 

20       0 0 

0    6.0862 0 

0        0       6.4989 

0.478   1.570 0 

1.570   94.70 0 

0 0 0 

ß = 1.5968. 

The clarity of the 0.4-radian fin fault in Figures 5.15 through 5.19 indicates that a 

fault of lesser value may be distinguishable during vehicle maneuvering. The resolution 

of lesser values of fault will be discussed in Chapter VI. 
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F.        CONCLUSIONS 

Chapter V introduced the idea of improving residual reduction and fault 

resolution characteristics of the model-based observer design by implementation of a 

Kaiman filter into the design's algorithm The Kaiman filter is a superior algorithm that 

improves prediction accuracy of state variables by filtering out inherent noise in the 

system. The utilization of a basic Kaiman filter was improved by the introduction of the 

optimized hydrodynamic coefficients that were found to more accurately represent the 

dynamic characteristics of a maneuvering 21UUV. Seven values of the Kaiman filter 

algorithm were identified as having the potential of improving filter performance by 

reducing maneuvering residual values. These seven values originated from the system 

noise matrix, Q, the measurement noise matrix, R, and the implementation of a scalar 

gain multiplier, ß. Optimization of these seven values over each maneuvering data set 

produced values that greatly increased residual reduction during maneuvers. The 

optimization of Q and R produced matrixes that accurately modeled the noise within the 

system In order to ensure proper amplification of faults within the system, a 

performance index, consisting of a normalized relative error value for the state residuals, 

was designed and utilized as the objective function for optimization. The optimization of 

this objective function produced optimized values for each data set that reduced 

maneuvering error to near zero values and significantly amplified errors due to system 

faults. The optimized values associated with data set interval FOUR were chosen to be 

used for the optimized Kaiman filter due to their superior fault amplification 

characteristics. Figures 5.15 through 5.19 graphically display the phenomenal fault 
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detection capability of an optimized Kaiman filter design that utilizes the optimized 

hydrodynamic coefficients of the model-based observer. 

The utilization of this design into the 21UUV will provide the vehicle with a 

robust and reliable fault detection algorithm that is capable of eliminating residual errors 

due to maneuvering, while having the capability to amplify and detect errors due to 

system faults. 
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VI.      ANALYSIS OF FAULT RESOLUTION OF FINAL DESIGN 

A.       DEVELOPMENT OF A FAULT DETECTION ALGORITM 

In order to simulate the fault detection capability of the optimized Kaiman filter 

design, a fundamental fault detection algorithm was written to identify faults within the 

normalized relative error value. Two methods for detecting a fault were included in the 

algorithm. The first method for detecting a fault simply entailed the classification of a 

fault if the normalized error exceeded a peak threshold value. The peak threshold was 

chosen through the evaluation of the maximum fault-free normalized errors developed by 

the vehicle throughout each maneuvering interval. The largest error was isolated and 

chosen as the threshold value. This peak threshold value was set at 0.0016. The second 

method for detecting fault errors included the interrogation of past error values after a 

lower threshold error value was exceeded by the system. Once the lower level is 

exceeded, the algorithm recalls four previous error values and evaluates their magnitudes. 

If the four previous errors had magnitudes greater than the lower threshold value, then a 

fault is said to exist. The past time history length evaluated by the algorithm depends on 

the sensitivity requirements of the vehicle operator. A large time history length 

minimizes false-detects within the system by overlooking anomalistic error spikes that 

may be developed within the measurement data. Although the minimization of the 

probability of false-detects is beneficial to unintentional mission aborts and unnecessary 

system reconfigurations, large time histories also lengthen the time between the initiation 

of an actual fault and the positive detection of the fault. Conversely, if the time history 

length is chosen too small, then the algorithm quickly detects faults, but may mistake 
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anomalistic error spikes as actual faults. This scenario increases the likelihood of mission 

aborts and unnecessary system reconfigurations. The trade-offs between the two 

extremes of fault detection must be properly weighted by the operator in order for a 

correct time history length to be chosen. After many evaluations of the sensitivities of 

differing time history lengths, the final time history chosen for fault detection evaluation 

of the 21UUV was 20 data steps, or 2.0 seconds. Unless the normalized errors due to a 

fault exceed the peak threshold value under two seconds, the time to detection of a fault 

will be in excess of 2.0 seconds. Optimally, the length of time between fault initiation 

and fault detection is approximately 5.0 seconds. Hopefully, fault detection under five 

seconds will allow the vehicle time enough to mitigate the fault or receive instructions 

from higher authority prior to vehicle endangerment or loss. Obviously, the time allotted 

to correct or mitigate a fault is dependent on the actual fault itself. The occurrence of a 

fin failure during deep-water operations is much less dangerous than loosing a fin while 

the vehicle conducts shallow water operations! 

B.        ANALYSIS OF FAULT DETECTION FOR EACH DATA INTERVAL 

The algorithm developed for detecting a full-stroke fin fault was evaluated over 

each data set interval. Since each interval contained maneuvering data, it was important 

to determine whether the optimized Kaiman design was capable of detecting faults during 

non-steady state conditions. The final Kaiman filter design of Chapter V will be utilized 

here for fault detection and resolution evaluation. The 0.4-radian fin fault was introduced 

at the beginning of each data set interval. Figures 6.1 through 6.5 display the resultant 

fault detection performance of the optimized Kaiman design. As seen in these figures, 
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detection of a full-stroke fin fault is very reliable and quick. The faults for these 

simulated fin failures were detected within 0.5 seconds of their initiation into the steering 

subsystem. The coupling of the optimized Kaiman filter with the fault detection 

algorithm produced a successful fault detection system that is robustly capable of 

detecting the full-stroke fin fault that wasn't detectable using prior model-based observer 

designs. 

Fault Detection for 0.4-Radian Fau» (Data: 4800-5800) 
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Figure 6.1 0.4-Radian Fault Detection w/Optimized Kaiman Design (Data: 4800-5800) 

Notes on Figure 6.1: Source Code Name - "faulttest.m" 
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Fault Detection for 0.4-Radian Fault (Data: 7500-8750) 
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Figure 6.2 0.4-Radian Fault Detection w/Optimized Kaiman Design (Data: 7500-8750) 

Notes on Figure 6.2: Source Code Name - "fault_test.ni" 

Fautt Detection for 0.4-Radian Fault (Data: 9250-10250) 
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Figure 6.3 0.4-Radian Fault Detection w/Optimized Kaiman Design (Data: 9250-10250) 

Notes on Figure 6.3: Source Code Name - "faultjest.m" 
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Faul Detection for 0.*-Rad!an Faul (Data: 10750-11500) 

Figure 6.4 0.4-Radian Fault Detection w/Optimized Kaiman Design 
(Data: 10750-11500) 

Notes on Figure 6.4: Source Code Name - "faulttest.m" 

Faul Detection for 0.4-Radian Fatt (Data: 18500-20500) 
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Figure 6.5 0.4-Radian Fault Detection w/Optimized Kaiman Design 
(Data: 18500-20500) 

Notes of Figure 6.5: Source Code Name - "fault_test.m" 
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C.       FAULT MAGNITUDE SENSITIVITY FOR DETECTION 

The clear indication of a fault in the previous five figures leaves little doubt as to 

the ability of this work's final fault detection design to detect a full-stroke fin fault. 

Although the ability to detect a fault of this magnitude was the motivation for this work, 

it is necessary to evaluate the sensitivity of the fault detection design to lesser magnitude 

fin faults. A full-stroke fin fault would be an 'ideal' failure for a fault detection design 

due to the large amount of normalized relative error produced within the steering 

subsystem A more probabilistic scenario for a fin failure would be for failure of the fin 

between the maximum and minimum range of its stroke. The final fault detection design 

of this work was evaluated over the range of stroke deflections for a 21UUV fin. The 

data set interval used to analyze the sensitivity of the fault detection design was taken 

from interval FOUR. Interval FOUR includes the largest and most dynamic maneuver 

taken by the 21UUV during its 21900 data point run. The graph of the track for this 

interval is reproduced here from Chapter in in order to display the unusual maneuvering 

aspects of this data interval set. This maneuver is a good representation of a highly 

dynamic maneuver where generation of state residuals and subsequent normalized errors 

would be very abundant. The analysis of the fault detection design's sensitivity to lesser 

stroke fin faults over this data set gives an accurate representation of the sensitivity of the 

design throughout all maneuvers. 

The peak threshold value for the fault detection design remained at 0.0016 and the 

lower value for time history interrogation was set at .00005. These values for threshold 

levels produced very good results for fault detection sensitivity of the final design. 
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Interval Four for Residual Analysis (Data: 10750-11500) 
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Figure 3.10 Data Set Interval Four 

Note on Figure 3.10: Source Code Name - "dead_int4.m" 

In order for the fault detection design to accurately detect a fault, the fault must be 

maintained through a majority of the data interval. Scattered fault-detects at low stroke 

magnitudes were not associated with actual faults. In actuality, the lowest error value for 

a fault-detect would be 0.0005, since this value is defined as the lower threshold value for 

fault detection. 

Figures 6.6, 6.7, and 6.8 display the fault sensitivity of the final design to faults of 

magnitude 0.2-radian, 0.1-radian, and 0.06-radian, respectively. The final value of a fin 

stoke that was detected was 0.055-radian. This would relate to a failed fin at an angle of 

3.15° offcenterline. The final sensitivity of the fault detection design exceeds all initial 

criteria for failure detection. In essence, the final fault detection design developed by this 

work performs better than originally required or desired. 
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Fault Detection for 0.2-Radian Fault (Data: 10750-11500) 
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Figure 6.6 Fault Sensitivity to 0.2-radian Fault (Data: 10750-11500) 

Note for Figure 6.6: Source Code Name - "faulttest.m" 
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x10 Fault Detection for 0.1-Radian Fault (Data: 10750-11500) 
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Figure 6.7 Fault Sensitivity to 0.1-radian Fault (Data: 10750-11500) 

Note for Figure 6.7: Source Code Name - "fault_test.m" 
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Fault Detection for 0.06-Radian Fault (Data: 10750-11500) 
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Figure 6.8 Fault Sensitivity to 0.06-radian Fault (Data: 10750-11500) 

Note for Figure 6.8: Source Code Name - "faulttest.m" 
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Figures 6.6 and 6.7 display fault detections that occurred due to normalized error 

exceeding the peak threshold value. As seen by these two plots, detection of the fault 

occurs very quickly. In comparison, Figure 6.8 displays a fault detected by time history 

errors exceeding the lower threshold value. As can be seen from this plot, the time to 

detect the fault increased due to the time length input into the time history portion of the 

fault detection algorithm. A plot of fault magnitude versus the time to fault detection is 

included in Figure 6.9. As annotated on the plot, 'time to detect' increases at an 

exponential rate for decreasing fault magnitude. Fault magnitude values greater than 

0.22-radian reach a constant 'time to detect' of 0.5 seconds. 

Fault Magnitude vs. Time to Detect for 2.0s Time History (Data: 10750-11500) 

0.04       0.06       0.08        0.1 0.12       0.14       0.16 
Fault Magnitude 

0.22       0.24 

Figure 6.9 Fault Magnitude vs. Time to Detect 

Note for Figure 6.9: Source Code Name - "sense.m" 
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D.       METHODOLODY FOR FAULT DETECTION DESIGN TAILORING 

The procedure to obtain the final fault detection design of this work can be 

adapted to fit other UUV's or AUV's. The fault detection design developed in this work 

is specifically oriented towards the characteristics and individuality of the 21UUV. 

Adaptation and subsequent implementation of a vehicle-specific fault detection design 

may be developed by following the basic procedures as outlined in Figure 6.10. This 

figure gives a broad procedural guideline to follow if a fault detection design of this type 

is to be adapted to another autonomous or unmanned underwater vehicle. If greater 

clarification of developmental procedures is necessary, one can refer back to this work in 

order to obtain all manners of fault detection specifics pertaining to this design. 

E.        CONCLUSIONS 

A fault detection algorithm was developed that utilized peak and time history 

interrogation in order to determine if a foult existed in the 21UUV steering 

bsystem. The sensitivity of the final fault detection design of this work was found to 

be as low as .055-radians for a fin fault. The sensitivity range of this fault detection 

design enables the 21UUV to detect a fin fault with a minimum stroke angle of 3.15° to 

the maximum stroke range of the fin, which is 23.0°. The time to detect the smallest 

detectable fin fault was 4.9 seconds. The minimum time to detect a fault was 0.5 seconds 

and this occurred for feults of magnitudes greater than 0.22 radians. 

error 

sui 
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Obtain Basic Hydrodynamic 
Coeffieinet Data 

I 
Develop Model-Based Observer for 

Desired Control System 

Execute Data Run With & Without 
Vehicle Fault 

Isolate Uncertain Hydrodynamic 
Coeffs. and Optimize Over 
Maneuvering Data Interval 

I 
Introduce the Kaiman Filter and 

Optimize Q, R, and ß 

I 
Analyze Fault-Free Normalized 

Relative Error 

I 
Set Error Thresholds for Fault 

Detection 

Recreate Fault and Analyze 
Threshold Levels. Adjust Levels for 

Desired Sensitivity 

Figure 6.10 Individual Vehicle Adaptation Procedure 
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The methodology used in this work can be adapted and implemented into other 

various unmanned or autonomous underwater vehicles. A basic procedural outline was 

provided which described the steps necessary to develop a similar fault detection system 

for another vehicle of choice. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

A.       CONCLUSIONS 

As with all autonomous systems or machines tasked with carrying out complex 

mission assignments in extreme environments, AUV's may experience unforeseen 

problems. These threaten the mission reliability and completeness of operational goals. 

To maximize the possibility of mission completeness, AUV control systems are being 

developed with the capability of detecting a variety of failures within their subsystems 

and autonomously correcting for such failures. 

This thesis has examined the design of a model-based observer and an extended 

Kaiman filter for detecting faults in the steering subsystem of the 21UUV. The 

utilization of real sensor measurement data from the 21UUV has enabled the filters to be 

accurately tuned for the characteristics of this particular vehicle. Specifically, the 

problem of fault detection in the presence of vehicle maneuvers has been studied in 

depth. This work has shown that optimization of the filter design has allowed for fault 

induced residuals to be distinguished from residuals induced by maneuvering alone. 

Further detailed conclusions for the development and optimization of filter design are 

contained at the end of each respective chapter. 

B.       RECOMMENDATIONS 

The further recommended work on the fault detection design produced in this 

work is substantial. The methodology used in the development of the final fault detection 

algorithm should be applied to the diving control and the roll control subsystems of the 
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21UUV. Adaptation of this methodology for use in another control subsystem can be 

easily accomplished by utilization and reconfiguration of the Matlab code developed for 

this work, which is included in Appendices A, B, and C. 

Also of importance to the further improvement of fault detection in unmanned or 

autonomous underwater vehicles is the ability to process sensor measurement data taken 

from a vehicle with an actual fault within its steering subsystem By having this data to 

use for the detection of actual faults, the fault detection design developed in this work can 

be adjusted to reliably detect an actual fault within the system 
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APPENDIX A. MATLAB CODE ASSOICIATED WITH ORIGINAL MODEL- 
BASED OBSERVER DESIGN 

The Matlab code associated and developed for the original model-based observer 

is contained on CD-ROM and is obtainable through request from Professor A. J. Healey. 

Appendix A is contained on the CD-ROM and can be found under the directory, 

assuming D is the letter representing the CD-ROM drive, D:\Gibbons_thesis\app_A. 

The files contained in Appendix A and within this directory are as follows: 

dead.m 

dead_intl.m 

dead_int2.m 

dead_int3.m 

dead_int4.m 

dead_int5.m 

0_dl.m 

0_dl_feults.m 

rap_count.m 

statejresp.m 
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APPENDIX B. MATLAB CODE ASSOCIATED WITH OPTIMIZATION OF 
MODEL-BASED OBSERVER DESIGN 

The Matlab code associated and developed for the optimization of the hydrodynamic 

coefficients of the model-based observer design is contained on CD-ROM and is 

obtainable through request from Professor A. J. Healey. Appendix B is contained on the 

CD-ROM and can be found under the directory, assuming D is the letter representing the 

CD-ROM drive, D:\Gibbons_thesis\app_B. The files contained in Appendix B and 

within this directory are as follows: 

• final_perf.m 

• opt_faults.m 

• opt_res_reduc.m 

• RMS_obs 

• side_perf_sets.m 
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APPENDIX C. MATLAB CODE ASSOCIATED WITH OPTIMIZED KALMAN 
FILTER DESIGN 

The Matlab code associated and developed for optimization of the extended Kaiman filter 

design is contained on CD-ROM and is obtainable through request from Professor A. J. 

Healey. Also included in this appendix is the code developed for the fault detection 

algorithm used in the final design. Appendix C is contained on the CD-ROM and can be 

found under the directory, assuming D is the letter representing the CD-ROM drive, 

D:\Gibbons_thesis\app_C. The files contained in Appendix C and within this directory 

are as follows: 

fcalc.m 

f_calc_orig.m 

faulttest.m 

kalmfaults.m , 

opti_call.m 

opti_kalm_sets.m 

res_comp_sets.m 

res_test.m 

res_test.both.m 

RMS_test_sets.m 

sense.m 

The necessity to place Appendices A, B, and C on CD-ROM arises from the large 

amount of code written for this work. By using a CD-ROM, anyone may access the files 

developed for this work and alter them as need be to further the research in this area. 

Also included on the CD-ROM is this entire text, written in MICROSOFT WORD 2000. 
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